QUEUEING MODELS 197

the one with the more variable service times (larger ¢°) will tend 10 have longer lines on the average.
Intuitively. if service times are highly variable. there is a high probability that a large service time will occur
(say, much larger than the mean service time). and, when large service times do occur, there is a higher-than-usual
tendency for lines to form and delays of customers to increase. (The reader should not confuse “steady state™
with low variability or short lines: a system in steady-state or statistical equilibrium can be highly variable
and can have long waiting lines.)

Example 6.9
There are two workers competing for a job. Able claims an average service time that is faster than Baker’s. but
Baker claims to be more consistent, even if not as tast. The arrivals occur according to a Poisson process at
the rate A = 2 per hour (1/30 per minute). Able’s service statistics are an average service time of 24 minutes
with a standard deviation of 20 minutes. Baker’s service statistics are an average service time of 25 minutes,
but a standard deviation of only 2 minutes. If the average length of the queue is the criterion for hiring. which
worker should be hired? For Able, A = 1/30 per minute. 1/t = 24 minutes, ¢ = 207 = 400 minutes*, p= A/u =
24/30 = 4/5. and the average queue length is computed as

_(1/30)'[247 + 400]

0 =2.711 customers
201-4/5)

For Baker, A = 1/30 per minute, 1/u = 25 minutes, 0° = 2° = 4 minutes®, p = 25/30 = 5/6, and the average

(ueue length is

C(1/30)[25° +4]
2(1-5/6)

=2.097 customers

0

Although working faster on the average, Able’s greater service variability results in an average queue length
about 30% greater than Baker’s. On the basis of average queue length, L), Baker wins. On the other hand,
the proportion of arrivals who would find Able idle and thus experience no delay is Py=1 - p=1/5=20%.
but the proportion who would find Baker idle and thus experience no delay is Py=1-p=1/6 = 16.7%.

One case of the M/G/1 queue that is of special note occurs when service times are exponential, which
we describe next.

The M/M/1 queue. Suppose that service times in an M/G/1 queue are exponentially distributed. with
mean 1/y; then the variance as given by Equation (5.27) is ¢° = 1/u-. The mean and standard deviation of
the exponential distribution are equal. so the M/M/1 queue will often be a useful approximate model when
service times have standard deviations approximately equal to their means. The steady-state parameters.
eiven in Table 6.4, may be computed by substituting ¢° = 1/ * into the formulas in Table 6.3. Alternatively,
I. may be computed by Equation (6.16) trom the steady-state probabilities P, given in Table 6.4, and then
w.wg. and L, may be computed from Equations (6.17). The student can show that the two expressions for
each parameter are equivalent by substituting p = A/g¢ into the right-hand side of each equation in Table 6.4.

Example 6.10
Suppose that the interarrival times and service times at a single-chair unisex hair-styling shop have been
shown to be exponentiatly distributed. The values of A and gt are 2 per hour and 3 per hour, respectively—
that is. the time between arrivals averages 1/2 hour. exponentially distributed. and the service time averages
20 minutes, also exponentially distributed. The server utilization and the probabilities for zero, one. two.
three. and four or more customers in the shop are computed as follows:
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From the calculations, the probability that the hair stylist is busy is 1 — P, = p = 0.67; thus, the proba-
bility that the hair stylist is idle is 0.33. The time-average number of customers in the system is given by
Table 6.4 as

L =i—:i =2 customers
u-A 3-2

The average time an arrival spends in the system can be obtained from Table 6.4 or Equation (6.17) as

L 2
w=—=—=1hour
2

A

The average time the customer spends in the queue can be obtained from Equation (6.17) as

1

W o =w——=1-—=

o . 3 hour

(ISR e

Table 6.4 Steady-State Parameters of the
M/M/1 Queve
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From Table 6.4, the time-average number in the queue is given by

A 4
—— = — customers

u—-24 3 3

L, =

Finally, notice that multiplying w = wy + 1/t through by A4 and using Little’s equation (6.9) yields

A 4 2
pt—= 3 + 3 =2 customers
u 3

L=1
Example 6.11
For the M/M/1 queue with service rate 4 = 10 customers per hour, consider how L and w increase as the
arrival rate, A, increases from 5 to 8.64 by increments of 20%, and then to A = 10.

A 5.0 6.0 7.2 8.64 10.0
P 0.500 0.600 0.720 0.864 1.0
L 1.00 1.50 2.57 6.35 oo
w 0.20 0.25 0.36 0.73 oo

For any M/G/1 queue. it A/u > 1, waiting lines tend to continually grow in length; the long-run measures of
performance. L, w. wy,, and L, are all infinite (L = w = w, = L, = o): and a steady-state probability distri-
bution does not exist. As is shown here for A < . if p is close to |, waiting lines and delays will tend to be
long. Notice that the increase in average system time. w. and average number in system, L, is highly nonlinear
as a function of p. For example. as A increases by 20%. L increases first by 50% (from 1.00 to 1.50). then
by 71% (to 2.57), and then by 147% (1o 6.35).

Example 6.12
If arrivals are occurring at rate A = 10 per hour, and management has a choice of two servers. one who works
atrate f1; = 11 customers per hour and the second at rate 4, = 12 customers per hour, the respective utiliza-
tions are py = A/uy = 10/11=0.909 and p, = A/~ = 10/12=0.833. If the M/M/1 queue is used as an approximate
model, then, with the first server, the average number in the system would be, by Table 6.4,

=L =9
- P
and, with the second server, the average number in the system would be
L=t o5
I P-

Thus. a decrease in service rate from 12 to 11 customers per hour, a mere 8.3% decrease, would result
in an increase in average number in system from 3 to 10. which is a 100% increase.

The effect of utilization and service variability

Forany M/G/1 queue, if lines are too long. they can be reduced by decreasing the server utilization p or by
decreasing the service time variability, ¢”. These remarks hold for almost all queues, not just the M/G/1
queue. The utilization factor p can be reduced by decreasing the arrival rate A, by increasing the service rate 1,
or by increasing the number of servers. because. in general, p = A/(cu). where ¢ is the number of parallel
servers. The effect of additional servers will be studied in the following subsections. Figure 6.12 illustrates
the effect of service variability. The mean steady-state number in the queue, L. is plotted versus utilization
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Figure 6.12 Mean number of customers waiting, L, in M/G/1 queue having service distributions with
given cv. [Adapted from Geoffrey Gordon, System Simulation, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1978.)

p for a number of ditferent coefficients of variation. The coefficient of variation (cv) of a positive random
variable X is defined as
V(X)

(cv) = ———
[E(X))

It is a measure of the variability of a distribution. The larger its value. the more variable is the distribution rel-
ative 1o its expected value. For deterministic service times, V(X) = 0. s0 cv = 0. For Erlang service times of order
k. VIX)y=tku?) and E(X)= U, soev=1/ Jk . For exponential service times at service rate fi. the mean serv-
ice time is E(X) = 1/ and the variance is V(X )= 1/u°. so cv = | If service times have standard deviation greater
than their mean (i.e., if ¢v > 1), then the hyperexponential distribution. which can achieve any desired cocetfi-
cient of variation greater than 1. provides a good model. One occasion where it arises is given in Exercise 16.

The formula for L, for any M/G/1 queue can be rewritten in terms of the coetticient of variation by
noticing that (cv)* = o*/(1/u)* = o’ . Therefore.

P o

Ky

©T - p)
_&1'1+(C‘i’,
21-p)

:(T/Lp} [‘_’t‘:")’ ] (6.18)
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The first term, p/(1- p), is L, for an M/M/1 queue. The second term. (1 + (cv)7)/2. corrects the M/M/1
formula to account for a nonexponential service-time distribution. The formula for w,, can be obtained from
the corresponding M/M/1 formula by applying the same correction factor.

6.4.2 Multiserver Queue: M/M/c/o/oo

Suppose that there are ¢ channels operating in parallel. Each of these channels has an independent and iden-
tical exponential service-time distribution, with mean 1/y. The arrival process is Poisson with rate A. Arrivals
will join a single queue and enter the first available service channel. The queueing system is shown in
Figure 6.13. If the number in system is # < ¢. an arrival will enter an available channel. However, when
n 2 ¢, a queue will build if arrivals occur.

The offered load is defined by A/u. If A > cu. the arrival rate is greater than or equal to the maximum
service rate of the system (the service rate when all servers are busy): thus, the system cannot handle the load
put upon it, and therefore it has no statistical equilibrium. If 1 > cy. the waiting line grows in length at the
rate (A — ct) customers per time unit, on the average. Customers are entering the system at rate A per time
unit but are leaving the system at a maximum rate of ¢ per time unit.

For the M/M/c queue to have statistical equilibrium. the offered load must satisfy A/u < ¢, in which case
Allcp) = p, the server utilization. The steady-state parameters are listed in Table 6.5. Most of the measures
of performance can be expressed fairly simply in terms of Py, the probability that the system is empty, or

7 . the probability that all servers are busy. denoted by P(L(e0) 2 ¢). where L(eo) is a random variable
representing the number in system in statistical equilibrium (after a very long time). Thus, P(L(e0) = n) = P,.
n=0.1,2,.... The value of P, is necessary for computing all the measures of performance. and the equation
for P, is somewhat more complex than in the previous cases. However, P, depends only on ¢ and p. A good
approximation to P, can be obtained by using Figure 6.14. where P, is plotted versus p on semilog paper for
various values ¢. Figure 6.15 is a plot of L versus p for different values of ¢.

The results in Table 6.5 simplify to those in Table 6.4 when ¢ = 1. the case of a single server. Notice that
the average number of busy servers, or the average number of customers being served. is given by the sim-
ple expression L — L, = Al = cp.

Example 6.13
Many early examples of queueing theory applied to practical problems concerning tool cribs. Attendants
manage the tool cribs as mechanics, assumed to be from an infinite calling population, arrive for service.
Assume Poisson arrivals at rate 2 mechanics per minute and exponentially distributed service times with
mean 40 seconds.

2
—

K ]
_——_—_/J 000

-
Calling population Waiting line .
of potential customers
¢ parallel
servers

Figure 6.13 Multiserver queueing system.
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Table 6.5 Steady-State parameters for the M/M/c Queuve
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Now, A =2 per minute, and y = 60/40 = 3/2 per minute. The offered load is greater than 1:

so more than one server is needed it the system is to have a statistical equilibrium. The requirement for
steady state is that ¢ > A/ = 4/3. Thus at least ¢ = 2 attendants are needed. The quantity 4/3 is the expected
number of busy servers, and for ¢ 2 2, p=4/(3¢) is the long-run proportion of time each server is busy. (What
would happen if there were only ¢ = | server?)

Let there be ¢ = 2 attendants. First, P, is calculated as

N -l
1 n -
@73y (4 1\ 2372
”()—{2 al5) (5)[_2@/2)——2”

n=0

] () -t

Next. the probability that all servers are busy is computed as

(4737 (1) _(8)/1
20-2/3\5)

3 15

P(L(0)>2) =
(L(c0)22) 3
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Figure 6.14 Values of P, for M/M/c¢/> model. (From F S. Hillier and G. J. Lieberman, Introduction to
Operations Research, 5th ed., 1990, p. 616. Adapted with permission of McGraw-Hill, Inc., New York.)

Thus. the time-average length of the waiting line of mechanics is

2138115 .
o= /38 ;u = 1.07 mechanics
1-2/3

L

and the time-average number in system is given by
L=1L, +-=—~—==—:=24mechanics

From Little’s relationships. the average time a mechanic spends at the tool crib is

L 24 .
w=—=—=1.2 mnutes
A2
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Figure 6.15 Values of L for M/M/c/> model. (From F. S. Hillier and G. J. Lieberman, Introduction to
Operations Research, 5th ed., 1990, p. 617. Adapted with permission of McGraw-Hill, Inc., New York.)

and the average time spent waiting for an attendant is

| 2 -
w, =w——=12-==0.533 minute
u 3

Example 6.14
Using the data of Example 6.13. compute P, and L from Figures 6.14 and 6.15. First. compute

2

A2
RETEVEY

=0.667

[SSH N R9)

Entering the utilization factor 0.667 on the horizontal axis of Figure 6.14 gives the value 0.2 for P, on the
vertical axis. Similarly. the value L = 2.4 is read from the vertical axis of Figure 6.15.
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An Approximation for the M/G/c/~ Queue

Recall that formulas for L, and wy, for the M/G/1 queue can be obtained trom the corresponding M/M/1 formulas
by multiplying them by the correction factor (1 + (¢v)2)/2. as in Equation (6.18). Approximate formulas for
the M/G/c queue can be obtained by applying the same correction factor to the M/M/c formulas for L, and
wy (no exact formula exists for 1 < ¢ < o). The nearer the ¢v is to 1, the better the approximation.

Example 6.15
Recall Example 6.13. Suppose that the service times for the mechanics at the tool crib are not exponentially
distributed, but are known to have a standard deviation of 30 seconds. Then we have an M/G/c model, rather
than an M/M/c. The mean service time is 40 seconds. so the coefficient of variation of the service time is

v — =<

Therefore, the accuracy of L, and w,, can be improved by the correction factor

I+ (cv) B 1+(3/4) 25
5 - 7 T30

For example, when there are ¢ = 2 attendants,
L, =(0.78)(1.07) = 0.83 mechanics

Notice that, because the coefficient of variation of the service time is less than 1, the congestion in the
system, as measured by L), is less than in the corresponding M/M/2 model.

The correction factor applies only to the formulas for Ly and wy,. Little’s formula can then be used to
calculate L and w. Unfortunately. there is no general method for correcting the steady-state probabilities, P,.

When the Number of Servers is Infinite (M/G//)

There are at least three situations in which it is appropriate to treat the number of servers as infinite:

1. when each customer is its own server—in other words, in a self-service system;
2. when service capacity far exceeds service demand, s in a so-called ample-server system; and
3. when we want to know how many servers are required so that customers will rarely be delayed.

The steady-state parameters for the M/G/eo queue are listed in Table 6.6. In the table, A is the arrival rate of
the Poisson arrival process. and 1/u is the expected service time of the general service-time distribution
{including exponential, constant. or any other).

Example 6.16
Prior to introducing their new. subscriber-only, on-line computer information service, The Connection must plan
their system capacity in terms of the number of users that can be logged in simultaneously. If the service is
successtul. customers are expected to log on at a rate of 2 = 500 per hour, according to a Poisson process. and
stay connected for an average of 1/4 = 180 minutes (or 3 hours). In the real system. there will be an upper limit
on simultaneous users. but. for planning purposes. The Connection can pretend that the number of simultaneous
users is infinite. An M/G/o< model of the system implies that the expected number of simultaneous users is L =
Al = 500(3) = 1500. so a capacity greater than 1500 is certainly required. To ensure providing adequate capacity
95% of the time. The Connection could allow the number of simultancous users to be the smallest value ¢ such that
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Table 6.6 Steady-State Parameters for the
M/ G/~ Queue
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The capacity ¢ = 1564 simultaneous users satisties this requirement.

6.4.3 Multiserver Queues with Poisson Arrivals and Limited Capacity: M/M/c/N/e

Suppose that service times are exponentially distributed at rate w, that there are ¢ servers, and that the total
system capacity is N 2 ¢ customers. If an arrival occurs when the system is full, that arrival is turned away
and does not enter the system. As in the preceding section. suppose that arrivals occur randomly according
to a Poisson process with rate A arrivals per time unit. For any values of A and u such that p# 1, the M/IM/c/N
queue has a statistical equilibrium with steady-state characteristics as given in Table 6.7 (formulas for the
case p =1 can be found in Hillier and Lieberman [2005]).

Table 6.7 Steady-State Parameters for the M/M/¢/N
Queue (N = System Capacity, a = A/u, p = A/(cw)

. n 13 N !
Py 1+ aﬁ+“—' > p
won e Oy
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The effective arrival rate. A,. is defined as the mean number of arrivals per time unit who enter and remain
in the syster. For all systems. A, < A: for the unlimited-capacity systems, A, = A; but, for systems such as the
present one, which turn customers away when full. A, < A. The effective arrival rate is computed by

A=Al =Py

because 1 — P is the probability that a customer. upon arrival, will find space and be able to enter the system.
When one is using Little’s equaticns (6.17) to compute mean time spent in system w and in queue wy, A must
be replaced by A..

Example 6.17
The unisex hair-styling shop described in Example 6.17 can hold only three customers: one in service, and
two wating. Additional customers are turned away when the system is full. The offered load is as previously
determined, namely A/u = 2/3.

In order to calculate the performance measures. first compute #,:

-1

2 2¢(2Y"
P = 1+7‘-+;2[;] =0.415
) RLFTERA W

The probability that there are three customers in the system (the system is full) is

9 3
P =P ::—(‘/3‘)_13“ :-8-:().]23
1" 65

Then, the average length of the queue (customers waiting for a haircut) is given by

27/65)(2/3)(2/3 , .
1, = EIONCIDID s 50/3) (1-2/3)) = 0.431 customer
¢ (1-2/3)

Now. the eftective arrival rate, 4,. is given by

114
A = 2[ 1 —% ]: e =1.754 customers per hour

Therefore, from Little’s equation. the expected time spent waiting in queue is

l‘ 2(
w, == =% 0,246 hour
A 114
and the expected total time in the shop is
16
w=w, +—= il =0.579 hour
o 114

One last application of Little's equation gives the expected number of customers in the shop (in queue and
getting a haircut) as

L=Aw= 9(—) =1.015 customers
‘ 65
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Notice that 1 — P, = 0.585 is the average number of customers being served or. equivalently, the
probability that the single server is busy. Thus, the server utilization, or proportion of time the server is busy
in the long run, is given by

1-P =—=0.585

0

The reader should compare these results to those of the unisex hair-styling shop before the capacity
constraint was placed on the system. Specifically, in systems with limited capacity. the offered load A/p can
assume any positive value and no longer equals the server utilization p = A./u. Notice that server utilization
decreases from 67% to 58.5% when the system imposes a capacity constraint.

6.5 STEADY-STATE BEHAVIOR OF FINITE-POPULATION MODELS (M/M/C/K/K)

In many practical problems. the assumption of an infinite calling population leads to invalid results because
the calling population is. in fact, small. When the calling population is small, the presence of one or more
customers in the system has a strong effect on the distribution of future arrivals, and the use of an infinite-
population model can be misleading. Typical examples include a small group of machines that break down
from time to time and require repair. or a small group of mechanics who line up at a counter for parts or
tools. In the extreme case. if all the machines are broken, no new “arrivals™ (breakdowns) of machines can
oceur; similarly, if all the mechanics are in line. no arrival is possible to the tool and parts counter. Contrast
this to the infinite-population models. in which the arrival rate. A. of customers to the system is assumed to
be independent of the state of the system.

Consider a finite-calling-population model with K customers. The time between the end of one service
visit and the next call for service for each member of the population is assumed to be exponentially distributed.
with mean 1/4 time units; service times are also exponentially distributed. with mean 1/¢ time units; there
are ¢ parallel servers, and system capacity is K, so that all arrivals remain for service. Such a system is
depicted in Figure 6.16.

The steady-state parameters for this model are listed in Table 6.8. An electronic spreadsheet or a
symbolic calculation program is useful for evaluating these complex formulas. For example, Figure 6.17 is
a procedure written for the symbolic calculation program Maple to calculate the steady-state probabilities for
the M/M/c/KIK queue. Another approach is to use precomputed queucing tables, such as those found in
Banks and Heikes [1984]. Hillier and Yu [1981], Peck and Hazelwood [ 1958] or Descloux [1962].

The eftective arrival rate A, has several valid interpretations:

A, = long-run effective arnval rate of customers to the queuc
= long-run effective arrival rate of customers entering service
= long-run rate at which customers exit from service
= long-run rate at which customers enter the calling population
(and begin a new runtime)

= long-run rate at which customers exist from the calling population

Example 6.18
There are two workers who are responsible for 10 milling machines. The machines run on the average for
20 minutes, then require an average 5-minute service period. both times exponentially distributed. Theretore.
A= 1/20 and y = 1/5. Compute the various measures of performance for this system.
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Figure 6.16 Finite-population queueing model.

Table 6.8 Steady-State Parameters for the M/M/c/K/K Queue
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mmcKK := proc(lambda, mu, ¢, K)
# return steady-state probabilities Zor M/M/ o/ K/¥ gaeus
# notice that pln+l} is P n, n=0,.. K
local crho, Kfac, cfac, p, n;
p : = vector(K+1,0);
crho := lambda/mu;
Kfac := K!;
cfac := c!;
pll] := sum/ {(Kfac, (nt*{K-n)!Y)*crho™n, n=0..c 1 posuml fELacs (o

(K-n) !'*cfac))*crho’n, n=c..K:;

pll] := 1/p(l};
for n from 1 to <-1
do
pln+ll := p[l]*{KidC/(n!*(K—n?ly'*:rhd'n;
od;
for n from ¢ to K
do
pln+l] := plil*{Kfac/(c”(n-c)* (K ) trefacs i rerho’n;
od;
RETURN {evalmip) ) ;
end;

Figure 6.17 Maple procedure to calculate P, for the 3/11/:/K/K queve.

All of the performance measures depend on P, which is

N

21 l() ;; " 1o fl /-
D [—) +2—4mf—f . S«J = 0.065
20 (10—n)1212" -1 20

n--0 n e \

From P,. we can obtain the other P, from which we can compute the average number of machines waiting
for service,
10

L,= Z(n —2)P =1.46 machines

n=3
the effective arrival rate.
10 ]
A= 2( 10-n)| = | P = 0.342 machines/minute
( ’ 20 )
n= -
and the average waiting time in the queue,
w, =L, /A =427 minutes
Similarly. we can compute the expected number of machines being serviced or waiting to be serviced.
10
L= ZIIP” = 3.17 machines
n-0

The average number of machines being serviced is given by

[L—L,=317-146=171 machines
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Lach machine must be either running. waiting to be serviced. or in service. so the average number of running
machines is given by

K—L=10-3.17=6.83 machines

A question frequently asked is this: What will happen if the number of servers is increased or decreased?
11 the number of workers in this example increases o three (¢ = 3). then the time-average number of running
machines increases o

K — 1. =7.74 machines

annerease of 0.91 machine. on the average.
Conversely, what huppens it the number of servers decreases to one? Then the time-average number of
“unning machines decreases to

K — L =398 machines

The decrease from two servers to one has resulted m a drop of nearly three machines running. on the average.
Examples 120 and 20 asks the reader to determine the optimal number of servers.

Example 6.18 illustrates several general relationships that have been found to hold for almost all queues.
(1" the number of servers i decreased. delays, server utilization. and the probability of an arrival having to

wail to begin service all increase.

6.6 NETWORKS OF QUEUES

fnn this chapter. we have emphasized the study of single queucs of the G/G/e/N/K type. However, many systems
are naturally modeled as networks of single queues in which customers departing from one queue may be
routed to another Example 6.1 (see. in particular. Figure 6.3) and Example 6.2 (see Figure 6.5) are illustrations.

The study of mathematical models of networks of queues is beyond the scope of this chapter: see. for
nstance. Gross and Harris [1997]. Nelson [1995]. and Kleinrock [1976]. However, a few fundamental prin-
ciples are very useful for rough-cut modeling. perhaps prior to a simulation study. The following results
assume a stable system with infinite calling population and no limit on system capacity:

1. Provided that no customers are created or destroyed in the queue. then the departure rate out of a
queue is the same as the arrival rate into the queue. over the long run.

2. If customers arrive to queue 7 at rate A, and a fraction 0 < p, < 1 of them are routed to queue j upon
departure. then the arrivad rate from queue i 1o queue jis A;p, over the long run.

3. The overall arrivad rate imto queue j. A, is the sum of the arrival rate from all sources. If customers
arrive from outside the network at rate . then

A= #—2}1 »,

4. 1 gueue j has o < oo purallel servers. cach working at rate g . then the long-run utilization of cach

SCTVET 1IN

o

and p, < 1 is required for the queue to be swable.
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5. If. for cach queue j. arrivals from outside the network form a Poisson process with rate «. and if there
are ¢, identical servicers delivering exponentially distributed service times with mean 1/y; (where ¢; may

be o). then. in steady state. queue j behaves like an M/M/e, queue with arrival rate A =da + 2 ; AD.

Example 6.19 : _
Consider again the discount store described in Example 6.1 and shown in Figure 6.3. Suppose that customers
arrive at the rate 80 per hour and that. of those arrivals, 40% choose self-service: then. the arrival rate to service
center 1is A, = (80)(0.40) = 32 per hour. and the arrival rate to service center 2 is A~ = (BH(0.6) = 48 per
hour. Suppose that cach of the ¢» = 3 clerks at service center 2 works at the rate - = 20 customers per hour.
Then the long-run utilization of the clerks is

48
p.=———= 0.8
T(2N20)

All customers must see the cashier at service center 3. The overall arrival rate to service center 3 is
Ac= A+ A= 80 per hour. regardless of the service rate at service center 1. because. over the long run. the
departure rate out of each service center must be equal to the arrival rate into it. If the cashier works at rate
: = 90 per hour. then the utilization of the cashier is

Example 6.20
Ata Driver's License branch office. drivers arrive at the rate 50 per hour. All arrivals must first cheek in with
one of two clerks, with the average check-in time being 2 minutes. After check in. 15% of the drivers need
1o take a written test that lasts approximately 20 minutes. All arrivals must wait to have their picture taken
and their license produced: this station can process about 60 drivers per hour. The branch manager wants 10

know whether it is adding a check-in clerk or adding a new photo station that will lead to a greater reduc-
tion in customer delay.

To solve the problem. let the check-in clerks be quene | (with ¢ = 2 servers. cach working at rate g, = 30
drivers per hour), let the testing station be queue 2 (with ¢, = e servers. because any number of people can
be taking the written test simultancously, and service rate g, = 3 drivers per hour). and let the photo station
be queue 3 (with ¢y = 1 server working at rate . = 60 drivers per hour). The arrival rates to cach queue are
as follows:

A=a+ 2 p. A, = Shdrivers per hour

A=a.+ 2 P4, =(0.15)A4, drivers per hour
i1

A=+ Z poA = (A, +(0.85) 4, drivers per hour
s

Notice that arrivals from outside the network oceur only at queue 1. so «; = 50 and ¢y = ay = (0. Solving this
system of equations gives 4, = A; = 50 and A, = 7.5.

If we approximate the arrival process as Poisson. and the service times at cach queue as exponentially
distributed. then the check-in clerks can be approximated as an M/M/c| queue. the testing station as an M/M/e



QUEUEING MODELS 213

queue. and the photo station as an M/M/c queue. Thus. under the current set-up. the check-in station is an
M/M/2: using the formulas in Table 6.5 gives w, = 0.0758 hours. If we add a clerk. so that the model is M/M/3.
the waiting time in queue drops to 0.0075 hours. a savings of 0.0683 hours or about 4.1 minutes.

The current photo station can be modeled as an M/M/1 queue. giving wy = 0.0833 hours: adding a
second photo station (M/M/2) causes the time in queue to drop to 0.0035 hours, a savings of 0.0798 hours.
or about 4.8 minutes. Therefore. a second photo station offers a slightly greater reduction in waiting time
than docs adding a third clerk.

If desired. the testing station can be analyzed by using the results for an M/M/eo queue in Table 6.6. For
instance. the expected number of people taking the test at any time is L = A/u, = 7.5/3 = 2.5.

6.7 SUMMARY

Queueing models have found widespread use in the analysis of service facilities. production and material-
handling systems. telephone and communications systems. and many other situations where congestion or
competition for scarce resources can oceur. This chapter has introduced the basic concepts of queueing models
and shown how simulation. and in some cases a mathematical analysis. can be used to estimate the
performance measures of a system,

A simulation may be used to generate one or more artificial histories of a complex system. This simu-
lation-gencrated data may. in turn. be used o estimate desired performance measures of the system.
Commonly used performance measures. including L. Lyow.ow,. poand A, were introduced. and formulas
were given for their estimation from data.

When simulating any system that evolves over time. the analyst must decide whether transient behavior
or steady-state performance is to be studied. Simple formulas exist for the steady-state behavior of some
queues, but estimating steady-state performance measures from simulation-generated data requires recog-
nizing and dealing with the possibly deleterious effect of the initial conditions on the estimators of steady-
state performance. These estimators could be severely biased (either high or low). if the initial conditions are
unrepresentative of steady state or if simulation run length is too short. These estimation problems arc dis-
cussed at greater length in Chapter 11,

Whether the analyst is interested in transicn: or in steady-state performance of a system. it should be
recognized that the estimates obtained from a simulation of a stochastic queue are exactly that—estimates.
Every such estimate contains random error. and a proper statistical analysis is required to assess the accu-
racy of the estimate. Methods for conducting such a statistical analysis are discussed in Chapters 11 and 12.

In the last three sections of this chapter. it was shown that a number of simple models can be solved
mathematically. Although the assumptions behind such models might not be met exactly in a practical appli-
cation. these models can still be useful in providing a rough estimate of a performance measure. In many
cases. models with exponentially distributed interarrival and service times will provide a conservative esti-
mate of system behavior. For example. if the model predicts that average wating time. w. will be 12.7
minutes. then average waiting time in the real system is likely to be less than 12.7 minutes. The conserva-
tive nature of exponential models arises because a) performance measures., such as w and L. are gencrally
increasing functions of the variance of interarrival times and service times (recall the M/G/1 queue). and (b)
the exponential distribution is fairly highly variable. having its standard deviation always equal to its mean.
Thus, if the arrival process or service mechanism of the real system is less variable than exponentially
distributed interarrival or service times. it is likely that the average number in the system, L. and the average
time spent in system., w, will be less than what is predicted by the exponential model. Of course. if the
interarrival and service times are more variable than exponential random variables. then the M/M queueing
models could underestimate congestion,
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An important application of mathematical queucing medels is determining the minunum number of servers
needed at a work station or service center. Quite often. if the arrival rate A and the service rate g are known o
can be estimated. then the simple inequality A/(c2 < | can be used to provide an initial estimate for the number
of servers. ¢, at a work station. For a large system with many work stations. it could be guite time consuming to
have to simulate every possibility (¢). ¢o. ...) for the number of servers. ¢, at work station 7. Thus. a bit of math-
ematical analysis rough estimates could save a great deal of computer time and analyst’s time.

Finally, the qualitative behavior of the simple exponential models of gueueing carries over 1o more
complex systems. In general. it is the variability of service tmes and the variability of the arrival process that
causes waiting lines to build up and congestion to occur. For most systems. it the arrival rate increases, or if
the service rate decreases. or if the variance of service times or interarrival times increases., then the system
will become more congested. Congestion can be decreased by adding more servers or by reducing the mean
value and variability of service times. Simple gueucing models can be a great wid in quantifving these
relationships and in evaluating alternative system designs.
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EXERCISES

1. Identify the calling population. customer. and server in the following queueing situations:

(a) university library
(b) bank teller counter
(¢) Internet router

(d) police station

(e) assembly line

E\)

A two-runway (one runway for landing. one runway for taking off) airport is heing designed for pro
peller-driven aireraft. The time to land an airplane is known to be exponentially distributed. with a mean
of 1-1/2 minutes. If airplane arrivals are assumed to occur at random. what arrival rate can he tolerated
if the average wait in the sky is not to exceed 3 minutes?
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3.

N

10.

11.

It customers arrive for service according to Poisson distribution with a mean of 5 per day, how fast the
average serviee time (assume exponential) mast be to keep average number in the system less than 47

Give some examples from real-life situations for balking and reneging.

Trucks arrive at a facility to be unloaded in a pattern. which can be characterized by the Poisson distri-
bution. The average rate of arrivals is 36 per hour, and the level of service is exponentially distributed
with a mean service rate of 39 trucks per hour. Compute all the relevant statistics for the system. The
drivers make Rs. 9 cach hour and do not unload the trucks. How much expense. on the average. is
incurred by the trucking company for idle time on the part of each driver for each visit to the facility?

Patients arrive for a physical examination according to a Poisson process at the rate | per hour. The
physical examination requires three stages. cach one independently exponentially distributed, with a
service time of 15 minutes. A patient imust go through all three stages before the next patient is admit-
ted to the treatment facility. Compute the average number of delayed patients. L, for this system. (Hint:
The variance of the sum of independent random variables is the sum of the variance.)

Suppose that mechanics arrive randomly at a tool crib according to a Poisson process with rate A = 10
per hour. 1t is known that the single tool clerk serves a mechanic in 4 minutes on the average, with a
standard deviation of approximately 2 minutes. Suppose that mechanics make $15.00 per hour. Estimate
the steady-state average cost per hour of mechanics waiting for tools.

The arrival of customers at a teller counter follows Poisson with a mean of 45 per hour and teller's
service time follows exponential with a mean of 1 minute. Determine the following:

(a) Probability of having 0 customer in the system. 5 customers in the system, and 10 customers in the
system.

(b) Determine Lo LW, and W

A machine shop repairs small electric motors. which arrive according to a Poisson process at the rate 12
per week (5-day, 40-hour workweek). An analysis of past data indicates that engines can be repaired. on
the average. in 2.5 hours. with a variance of 1 hour*. How many working hours should a customer expect
to leave a motor at the repair shop (not knowing the status of the system)? If the variance of the repair
time could be controlled. what variance would reduce the expected waiting time to 6.5 hours?

Arrivals to a self-service gasoline pump occur in a Poisson fashion at the rate 12 per hour. Service time
has a distribution that averages 4 minutes. with a standard deviation of 1-1/3 minutes. What is the
expected number of vehicles in the svstem?

Classic Car Care has one worker who washes cars in a four-step method-—soap, rinse, dry. vacuum. The
time to complete cach step is exponentially distributed, with mean 9 minutes. Every car goes through
every step before another car begins the process. On the average. one car every 45 minutes arrives for a
wash job. according to a Poisson process. What is the average time a car waits to begin the wash job? What
is the average number of cars in the car wash system? What is the average time required to wash a car?

Machines arrive for repair at the rate of six per hour following Poisson. The mechanics mean repair time
is 15 minutes. which tollows exponential distribution. The down time cost for the broken down
machines per hour is Rs. 300. Mechanics are paid Rs. 60 per hour. Determine the optimal number of
mechanics to be emploved to mimimize the total cost.
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13. Given the following information for a finite calling population problem with exponentially distributec
runtimes and service times:

K=10
LY
U
l:?%?
A
c=2

Compute L, and w,. Find the value of A such that L, = L/2.

14. Suppose that Figure 6.6 represents the number in system for a last-in—first-out (LIFO) single-server sys-
tem. Customers are not preempted (i.¢.. kicked out of service), but, upon service completion. the mosi
recent arrival next begins service. For this LIFO system, apportion the total area under L{#) to each indi-
vidual customer, as was done in Figure 6.8 for the FIFO system. Using the figure. show that Equations
(6.10) and (6.8) hold for the single-server LIFO system.

15. Repeat Exercise 14, but assuming that

(a) Figure 6.6 represents a FIFO system with ¢ = 2 servers:
(b) Figure 6.6 represents a LIFO system with ¢ = 2 servers:

16. Consider a M/G/1 queue with the following type of service distribution: Customers request one of two
types of service, in the proportions p and [—p. Type 7 service is exponentially distributed at rate g, i = 1.2
Let X, denote a type-i service time and X an arbitrary service time. Then E(X,) = 1/, V(X))=1/1 and

X, with probability p
| X, with probability (1 - p)

The random variable X is said to have a hyperexponential distribution with parameters ( . i ,. p).

(a) Show that E(X) = p/u, + (1=p)g» and E(X7) = 2p/u; +201 - pyu:.

(b) Use V(X) = E(X?) — [E(X)]* to show V(X)=2p/u; +2(1 = pylu; = ply, + (= pyp, |

(¢) For any hyperexponential random variable. if y; # ¢, and 0 < p < 1. show that its coetficient of vari-
ation is greater than |—that is. (cv)? = V(X)/|E(X)]? > 1. Thus. the hyperexponential distributior
provides a family of statistical models for service times that are more variable than exponentially
distributed service times. Hinr: The algebraic expression for (cv)*. by using parts (a) and (b). can be
manipulated into the form (cv)> = 2p(1-p) Vg~V EX) ] + 1.

(d) Many choices of i,. tto, and p lead to the same overall mean E(X) and (cv)-. If a distribution with
mean E(X) = 1 and coefficient of variation c¢v = 2 is desired. find values of . . and p to achieve
this. Hint: Choose p = 1/4 arbitrarily: then solve the following equations for g, and 1.
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17.

18.

19.

22,

o
bl

Orders are expected to arrive at a machining center according to Poisson process at a mean rute of
30 per hour. The management has an option of two machines M1 (fast but expensive) and M2
(slow inexpensive). Both machines would have an exponential distribution for machining times with
M1 having a mean of 1.2 minutes and M2 having a mean of 1.5 minutes. The profit per year is given by
Rs. 72.000/W. where W is the expected waiting time (in minutes) for the orders in the system. Determine
the upper bound on the difference in the average yearly cost that would justify buying M1 rather than M2,

In Example 6.18. increase the number of machines by 2, then compare the systems with ¢ = 1, ¢ = 2.

and ¢ = 3 servers on the basis of server utilization p (the proportion of time a typical server is busy ).

Vehicles pass through a toll gate at a rate of 90 per hour. The average time to pass through the gate is
36 seconds. The arrival rate and service rate follow Poisson distribution. There is a complaint that the
vehicles wait for a long duration. The authorities are willing 1o install one more gate to reduce the
average time to pass through to 30 seconds. if the idle time of the toll gate is fess than 104 and the present
average queue length at the gate is more than five vehicles. Check whether the instaliation of the second
gate is justified.

The arrival of employees at a ool crib can be described by a Poisson distribution. Service times are
exponentially distributed. The rate of arrival averages 45 machinists per hour. while an attendant can
serve an average of S0 men per hour. The machinists are paid Rs. 24 per hour, while the attendants are
paid Rs. 15 per hour. Find the optimum number ot attendants to place in the crib, assuming 8 hours and
200 days per vear.

This problem is based on Case 8.1 in Nelson [1995]. A large consumer shopping mall is to be con-
structed. During busy times. the arrival rate of cars is expected to be 1000 per hour. and studies at other
malls suggest that customers will spend 3 hours, on average. shopp'ng. The mall designers would like
to have sufficient parking so that there are enough spaces 99.9% of the time. How many spaces should
they have? Hint: Model the system as an M/G/es queue where the spaces are servers. and find out how
many spaces are adequate with probability 0.999.

In Example 6.19. suppose that the overall arrival rate is expected to increase to 160 per hour. If the sery -
ice rates do not change, how many clerks will be needed at service centers 2 and 3. just to keep up with
the customer load?

A small copy shop has a self-service copier. Currently there is room for only 4 people to line up for the
machine (including the person using the machine): when there are more than 4 people. then the addi-
tional people must line up outside the shop. The owners would like 1o avoid having people line up our-
side the shop. as much as possible. For that reason. they are thinking about adding a second self-service
copier. Self-service customers have been observed to arrive at the rate 24 per hour. and they use the
machine 2 minutes. on average. Assess the impact of adding another copier. Carefully state any assump-
tions or approximations you make.

In an N machine one operator environment. five automatic machines are attended by one operator. Every
time a machine completes a batch. the operator must reset it before a new batch is started. The time to
complete a batch run is exponential with a mean of 45 minutes. The setup time is also exponential with
a mean of 8 minutes. Determine

(a) the average number of machines that are waiting for set up.
(b) the probability that all the machines are working.
(c) the average time a machine is down.
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25. Scarch the web and find applications of queueing theory in production activities.

26. Study the effect of pooling servers thaving multiple servers draw from a single queue. rather than each
having its own queue) by comparing the performance measures tor two M/M/1 queues. cach with arrival
rate A and service rate (. to an M/M/2 queue with arrival rate 24 and service rate ¢ for cach server.

27. A repair and inspection facility consists of two stations: a repair station with two technicians, and an
inspection station with 1 inspector. Each repair technician works at the rate 3 items per hour: the inspec-
tor can inspect 8 items per hour, Approximately 10% of all items fail inspection and are sent back to the
repair station. (This percentage holds even for items that have been repaired two or more times. ) It items
arrive at the rate S per hour, what is the long-run expected delay that items experience at cach of the two
stations. assuming a Poisson arrival process and exponentially distributed service times? What is the
maximum arrival rate that the system can handle without adding personnel?
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Random-Number Generation

Random numbers are a necessary hasic ingredient in the simulation of almost all discrete systems. Most
computer fanguages have a subroutine. object. or function that will generate a random number. Similarly.
simulation languages generate random numbers that are used to generate event times and other random vari-
ables. In this chapter. the generation of random numbers and their subsequent testing for randomness is
deseribed. Chapter 8 shows how random numbers are used to generate a random variable with any desired

probability distribution.

7.1 PROPERTIES OF RANDOM NUMEERS

A sequence of random numbers, Ry R.. ... must have two important statistical properties: uniformity and
independence. Each random number R, must be an independent sample drawn from a continuous uniform
distribution between zere and 1--—that is. the pdf is given by

_ Jl.o<x <

flay= )
l(). otherwise
This density function is shown in Figure 7.1, The expected value of cach R, is given by
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Usnalby. random numbers are generated by a digital computer. as part ot the simulation. There e
numerots sicthods that cian be used to generate the values. Betore we desceribe some of these methods, or
routines. there are a number of important considerations that we should mention:

1. The routine should be fast. Individual computations are inexpensive, but simulation could require
many millions of random numbers. The total cost can be managed by selecting a computationalthy
cfficient method of random-number generation.

2. The routine should be portable to ditferent computers
This is desirable so that the simulation program will produce the same results wherever tUis executed.

and. ideally. to different programming languages.

3. The routine should have a sufficiently Tong cvele. The evele lengthe or period. represents the length
of the random number sequence before previous numbers hegin o repeat themselves inan earlier
order. Thus. it 10.000 events are to be generated. the pertod should be many times that long.

A special case of eyehing is degenerating. A routine degenerates when the same randony numbers appecr
repeated!y. Such an oceurrence is certainly unaceeptable. This can happen rapidly with seme methods

4. The random numbers should be replicable. Given the starting point (or conditions) it should he
possible to generate the same set of random numbers. completely independent of the system that is beine
simulated. This is helptul for debugging purposes und is a means of facilitating comparisons between
systems (see Chapter 12). For the same reasons, it should be possible to easily specify different starting
pomts. widely separated. within the sequence.

5. Mostimportant. the generated random numbers should closely approximate the ideal statistical propr-
erties of uniformity and independence.

Inventing techniques that seem o generate random aumbers is casy: invenung techniques that really do
produce sequences that appear to be mdependent. uniformly distributed random numbers is incredibly diff
cult. There is now a vast literatare and richi theery on the topic, and many hours of testing have been devored
to e~tiablishing the propertics of various generators. Even when a technique is known to be theoreticaily
sotne. 10 is seldom easy to implement it a wey that will be fast and portable. The goal of this chapter is to
make the reader aware of the central issues in random-number generation. to enhance understanding and to
show some of the techniques that are used by those working in this arca.

7.3 TECHNIQUES FOR GENERATING RANDOM NUMBERS

he finear congruential method of Section 7.3 1 is the most widely used technique for gencrating random
numbers. so we describe it in detail. We ddso report an extension of this method that yields sequences with
alonger period. Many other methods have been proposed. and they are reviewed in Bratley. Foxcand Schraee
[1996]. Law and Kelton [2000]. and Ripley [ T987].

7.3.1 Linear Congruential Method
The Tincar congruential method. imitally proposed by Lehmer [TOST] produces o sequence of integers.
N X-o o between zero and i - 1 by following a recursive relationship:

Noo=wX +ormodm. =012, (7.4

The mital value X, is called the seed, « is called the multiplier. ¢ is the increment. and m 15 the modufus.
I1 ¢ = 0m Equaton (7.1). then the form is called the mixed congruential method. When ¢ = 0. the Tform i
knowi i the madtiplicarive congruential method. The selection of the values tor a. com. and X, drasticalhy
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Figure 7.1 pdf for random numbers.

Some consequences ol the uniformity and independence properties are the following:

1. It the interval [0. 1] s divided into i classes. or subintervads of equal Tength. the expected number ol
obsernvations in cach interval is N/ n. where N is the total number of observations.

2. The probability of observing a value in a particular interval is independent of the previous values
drawn.

7.2 GENERATION OF PSEUDO-RANDOM NUMBERS

Notice that the title of this section has the word “pseudo™ it "Pseudo™ means false. so false random
numbers are being generated! In this mstance. “preudo™ 15 used to imply that the very act of generating
andom numbers by a known method removes the potential tor true randomness. [t the method is known. the
~et ol random numbers can be rephicated. Then an argument can be made that the numbers are not truhy
andom. The goal of any gencration scheme. however, is to produce a sequence of numbers between 0 and |
that simulates. or mitates. the ideal properties of untform distribution and independence as closely as
wssible.

To be sure, in the generation of” pseudo-randem numbers, certain problems or errors can occur. These
errors, or departures from ideal randomness. are all related te the propertics stated previously. Some examples
of such departures include the following:

1. The generated numbers might not be unitormly distributed.
2. The generated numbers might be diserete-valued instead of continuous-valued.
3. Th

. The variance of the generated numbers might be too high or too Tow,

mean of the generated numbers might be too high or too low.

o

"I b

. There might be dependence. The following are examples:
(a) autocorrelation between numbers:
(b)Y numbers successively higher or lower than adjacent numbers:
(¢) several numbers above the mean followed by several numbers below the mean.

Departures from uniformity and independence for a particular generation scheme often can be detected
N such tests as those deseribed in Section 7401t such departures are detected. the generation scheme should
w dropped in favor of an acceptable generator. Generators that pass the tests in Section 7.4 and (ests even
more stringent have been developed: thus. there 1s no excuse for using a generator that has been found to be

Jdetective.
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affects the statistical properties and the cycle length. Variations of Equation (7.1) are quite common in the
computer generation of random numbers. An example will illustrate how this technique operates.

Example 7.1
Use the lincar congruential method to generate a sequence of random numbers with X, =27, ¢ = 17. ¢ = 43,

and m = 100. Here, the integer values generated will all be between zero and 99 because ol the value of the
modulus. Also. notice that random integers are being generated rather than random numbers. These random
integers should appear to be uniformly distributed on the integers zero to 99. Random numbers between zero
and | can be generated by

The sequence of X and subsequent R, values 1s computed as follows:

X, =27
X, =(l 7-27+43) mod 100 = 502 mod 100 =2
2
R = =002
100
X, =(17-2443) mod 100 =77 mod 100 =77
R. = l =0.7
- 100
X, =(17-77+43) mod 100 = 1352 mod 100 =32
57
=—=0.52
100

Recall that « = b mod m provided that ¢h — ) 1s divisible by m with no remainder. Thus, X, = 302 mod 100,
but 302/100 equals S with a remainder of 2. so that X, = 2. In other words. (502 — 2) is evenly divisible by
m = 1000 s0 X, = 502 “reduces™ to X, = 2 mod 100. (A shortcut for the modulo. or reduction operation for
the case m = 10" a power of 10, is illustrated in Example 7.3)

The ultimate test of the linear congruential method. as of any generation scheme. is how closely the gen-
crited numbers R, R.. ... approximate uniformity and independence. There are. however. several secondary
properties that must be considered. These include maximum density and maximum period.

First. notice that the numbers generated from Equation (7.2) assume values only from the set /= {0, 1/m.
2mic = 1/} because each X, s an integer in the set {0. 1. 2. ... m = 1'}. Thus, cach R; is discrete on /.
mstead of continuous on the interval [0, 1] This approximation appears to be of little consequence if the
modulus mis a very large integer. (Values such as mr= 2" — T and m = 2* are in common use in generators
appearing in many simulation languages.) By maximum density is meant that the values assumed by R,
i= 1.2, ... lcave no large gaps on [0, 1].

Second. to help achieve maximum density, and to avotd cycling (i.c.. recurrence of the same sequence of
cenerated numbers) in practical applications. the zenerator should have the largest possible period. Maximal
period can be achieved by the proper choice of a. ¢, m. and X, [Fishman. 1978; Law and Kelton, 20001].

o Forma power of 2, say m = 2" and ¢ # 0. the longest possible period s P = = 2" which is achieved

whenever ¢ s relatively prime to m (that is. the greatest common factor of candmis Iyand a =1 + 44,
where & is an integer.
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e For m a power of 2, say m = 2", and ¢ = 0, the longest possible period is P = m/4 = 2" ° which is
achieved if the seed X, is odd and if the multiplier, . is given by ¢ = 3 + 8k or a = 5 + 8k, for some &
=0, 1.

e For m a prime number and ¢ = 0. the longest possible period is P =m — 1. which is achieved whenever the
multiplier, a. has the property that the smallest integer & such that @* — 1 is divisible by nris k =m — 1.

Example 7.2
Using the multiplicative congruential method. find the period of the generator for a = 13, m = 2° = 64 and
Xy = 1.2, 3. and 4. The solution is given in Table 7.1. When the seed is 1 or 3. the sequence has period 16.
However, a period of length eight is achieved when the seed is 2 and a period of length four occurs when the
seed s 4.

tn Example 7.2, m = 2° = 64 and ¢ = 0. The maximal period is therefore P = m/4 = 16. Notice that this
period is achicved by using odd seeds, X; = | and X,, = 3: even seeds, X, = 2 and X,, = 4, yield the periods
cight and four, respectively, both less than the maximum. Notice that ¢ = 13 is of the form 5 + 8k with & = 1.
as is required to achieve maximal period.

When X, = 1. the generated sequence assumes values from the set {1. 5.9, 13, .... 53, 57. 61}. The
“gaps” in the sequence of generated random numbers, R,, are quite large (i.e., the gap is 5/64 — 1/64 or
0.0625). Such a gap gives rise to concern about the density of the generated sequence.

The generator in Example 7.2 is not viable for any application——its period is too short, and its density
is insufficient. However, the example shows the importance of properly choosing a. ¢, m. and X,,.

Speed and efficiency in using the generator on a digital computer is also a selection consideration. Speed
and efficiency are aided by use of a modulus. m. which is cither a power of 2 or close to a power of 2. Since
most digital computers use a binary representation of numbers, the modulo. or remaindering, operation of
Equation (7.1) can be conducted efficiently when the modulo is a power of 2 (i.e., m = 2"). After ordinary
arithmetic yields a value for aX, + ¢, X,., is obtained by dropping the leftmost binary digits in «X, + ¢ and

Table 7.1 Period Determination Using Various

Seeds

i X, X, X X;
0 | 2 3 4
| 13 26 39 52
2 41 18 59 36
3 21 42 63 20
4 17 34 51 4
5 29 58 23

6 57 50 43

7 37 10 47

8 33 2 35

9 45 7
10 9 27
11 53 31
12 49 19
13 61 55
14 25 I
15 5 15
16 1 3
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then using only the b rightmost binary digits. The followinz example illustrates, by analogy. this operation
using m = 107, because most human beings think in decimal representation,

Example 7.3 _

Letnr=107= 100, ¢ = 19. ¢ = 0, and X, = 63. and generate a sequence of random integers using Equation (7.1,

X, =03
X, = (19)63) mod 100 =1197 mod 100 =97
X, =(19197) mod 100 = 1843 mod 100 =43

A =943 mod 100 =817 mod 100 =17

When i is a power of 100 say m = 107, the modulo operation is accomplished by saving the b rightmost
(decimahy digits. By analogy. the modulo operation is most efficient for binary computers when m = 2" for
some b >0,

Example 7.4

The Tast example in this section is in actual use. It has been extensively tested [Learmonth and Lewis. 1973:
Lewis of al.. 1969]. The values for . . and m have been selected 1o ensure that the characteristics desired
in a generator are most likely to be achieved. By changing X, the user can control the repeatability of the
stream.

letu=7 = 16807 m=2""— 1 =2 147483.647 (a prime numbery: and ¢ = 0. These choices satisly the
conditions that insure a period of 2= m - I (well over 2 billion). Further. specify the seed X, = 123457, The
first few numbers generated are as follows:

C=770123.457 rmod (2 =1 = 2.074.941.799 mod (27 — 1)
X, =2.074.941.799

-~

-

= (0.9602

IJ‘

N =7 (2.074.931.799) mod (27 = 1) = 559.872.160

S =0.2607

IJ‘)—'

X, = 7(559.872.160) mod (27 —1) = 1.645.335.613

| -

R. == =07662

(9]

Notice that this routine divides by m -+ 1 instead of m: however. for such a large value of m, the ceffect
i~ neehigible.

7.3.2 Combined Linear Congruential Generators

A~ computing power has increased. the complexity of the systems that we are able to simulate has also
increased. A random-number generator with period 27 = 1= 2 x 10°, such as the popular generator described
in Example 7.4 is no longer adequate tor all applications. Examples include the simulation of highly reliabfe
svatems. in which hundreds of thousands of elementary events must be simulated to observe even asingle failure
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stentand the simutation of complex computer networks. in which thousands ot users are executing hundreds
St programs, Anarca of current rescarch s the deriving of generators with substantially Tonger periods.

One treattul approsch s o combine two or mere imultiplicative congruential generators in such wway
bt the combined gencerator has zeod stausical properties and a fonger period. The foliowing result froni

Pobcuyer [HUSN] stgeests how this ¢ be done:

W oW oW e any independent. diserete-valued random variables tnot necessarily identically
Jistributed). but one of themo say W lis uniformis distributed on the mtegers from 0 to oy, — 2. then

1 \
W N{ Z W J mod i, —1

eountformy distributed on the integers from O oo - 2,

o see how this result can be used 1o formy combined generators, et X\ N 00 X be the 7ith oot
from A different multiplicative congraential eencrators. where the jth gencrator has prime modulus s and
the multplier ¢, 1s chosen o that the pertod o o - 1 Then the jth generator is producing inteeers X that
are approximately unitormly distributed onthe mtegers trom o = Loand W = X — 1 is approximately

al

uniformby distributed on the integers from O to o = 20 Ecuver [T98K] therefore suggests combined gener-

dors of the form

N = z(—fl) N fmadm -1

with
v '
. ' >0
"
Fal —
no = |
il = i
e X =0
n, ‘
Notice that the (=117 " coeflicient implicitly performs the subtraction X, | - 12 for example. it &k = 2 then

COUN ==Y o h= Y b Y
i
Fhe manmum possible pertod for such aeenerator is
(ni, =Inpic—heom =1

= 3

which s achieved by the generator described in the next example.

Fxample7s , i
For 32-bit computers, 'Ecuyer (1988 suggests combining A = 2 generators with i,

po= 40014 m. = 2 147 483,399 and = 40,692 This leads to the following algorithm:

F. Sclect seed Ny ihe ranee (120474835621 for the first generator. and seed X in the range
[1214. 7483398 Tor the second.,
Set =0
2. Bvaluate cach indrcrdual generator,
Ny = 40014 X, mod 20047 483503
Ny = 40,692 X- mod 20147 483,390

-

-
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X=X, =X, pmod 20147483502

4. Return

X
— X >0
2.147.483.563

T 20147483562 »
2 147,483,563 -

S. Setj=j+ 1 and goto step 2.

This combined generator has period (my — ims — 1)/2 = 2 10" Perhaps surprisingly. even such a long
period might not be adequate for all applications. See L'Ecuyer [ 1996, 1999} and L' Ecuyer er af. [2002] fo-

combined generators with periods as long as 2! = 3 < 107

7.3.3 Random-Number Streams

The seed for a lincar congruential random-number gencrator (seeds, in the case of @ combined linear con
eruential generator) is the integer value X, that initializes the random-number sequence. Since the sequence
of integers X, X,. ... X, X,,o X,. ... produced by a generator repeats, any value in the sequence could be
used to seed” the generator.

For a lincar congruential generator. a random-number szrean 1s nothing more than a convenient way to
refer to a starting seed taken from the sequence X, N . ..o X, (for a combined generator. starting seeds fo-
all of the basic generators are required): typreally these starting seeds are far apart in the sequence. Fo
instance. i the streams are h values apart. then stream 7 could be defined by starting seed

S =X,

fori=1.2.....LP/bJ. Values of b= 100.000 were comman in older generators, but values as large as b = 10°
are in use m modern combined lincar congruential generators. (Sce. for instance. L'Ecuyer er «f. [2002] for the
implementation of such a generator.) Thus, a single random-number generator with & streams acts like & distinel
virtual random-number generators, provided that the current value of seed for cach stream is maintained.
Exercise 21 illustrates one way to create streams that are widely separated in the random-number sequence

In Chapter 12, we will consider the problem of comparing two or more alternative systems via simula
ton, and we will show that there are advantages to dedicating portions of the pseudorandom numbe-
sequence to the same purpose in each of the simulated sy stems. For instance. in comparing the efficiency ol
several queueing svstems. a fairer comparison will be achieved if all of the simulated systems experience
exactly the same sequence of customer arrivals. Such synchronization can be achieved by assigning
speettic stream to generate arrivals in cach of the queueing simulations. If the starting seeds for the streams
are spaced far enough apart. then this has the same effect as having a distinet random-number generator
whose only purpose is to generate customer arrivals.

7.4 TESTS FOR RANDOM NUMBERS

The desirable properties of random numbers——unitormity and independence—were discussed in Section 7.1
To check on whether these desirable properties have been achieved. a number of tests can be performed.
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(Fortunately. the appropriate tests have alreadyv been conducted for most commercial simulation software. )
The tests can be placed in two categories. according to the properties of interest: untformity. and independ-
ence. A brief description of two types of tests is given in this chapter:

L. Frequency test. Uses the Kolmogorov=Smirnov or the chi-square test to compare the distribution of
the set of numbers generated o a uniform distribution.

2. Autocorrelation test. Tests the correlation between numbers and compares the sample correlation to
the expected correlation. zero.

[n testing for unitormity. the hypotheses are os follows:

Hy: R - U0 1]
H : R+ U0, 1]

The null hypothesis, /4, reads that the numbers cre distributed uniformly on the interval [0, 1], Failure o
reject the null hypothesis means that evidence of nonuniformity has not been detected by this test. This docs
notimply that further testing of the generator for aniformity is unnecessary.

In testing for independence. the hypotheses are as follows:

Hy,: R, ~ idependently
Hy o R, + independently

This null hypothesis. H,,. reads that the numbers are independent. Failure to reject the null hypothesis means
that evidence of dependence has not been detected by this test. This does not imply that further testing of the
generator for independence is unnecessary.

For cach testoalevel of significance ¢ must be stated. The Tevel «is the probability of rejecting the null
hypothesis when the null hypothesis is true:

o= Plreect H, ‘ H, true)

The decision maker sets the value of o for any test. Frequently. «is set to 0.01 or 0.05.

I several tests are conducted on the same set of numbers. the probability of rejecting the null hypothe-
sis on-at feast one test. by chance alone [ie. making a Type T (@) error]. increases. Say that o = 0.05 and
that five different tests are conducted on a sequence of numbers. The probability of rejecting the null hypoth-
2sis on at least one test, by chance alone. could be as large as 0.25.

Similarly. il one testis conducted on many sets of numbers from a generator, the probability of reject-
tng the null hypothesis on at feast one test by chance alone [i.e.. making a Type [ (o) error]. increases as more
sets of numbers are tested. For instance. it 100 sets of numbers were subjected to the test. with o = 0.05. it
would be expected that five of those tests would be rejected by chance alone. If the number of rejections in
00 tests is elose to 100 then there is no compelling reason to discard the generator. The concept discussed
n this and the preceding paragraph is discussed further at tae conclusion of Example 7.8.

It one of the well-known simualation languages or random-number generators is used. it is probably
unnecessary o apply the tests just mentioned and described in Sections 7.4.1 and 7.4.2. However. random-
number generators frequently are added to software that is not specitically developed for simulation. such as
spreadsheet programs. symbolic/numerical caleulators. and programming  languages. 1f the generator
that is at hand is not explicitly known or documented. then the tests in this chapter should be applied to
many samples of numbers from the generator. Some additional tests that are commonly used. but are not
covered here. are Good's serial test for sampling nambers [ 1953, 1967]. the median-spectrum test [Cox and
Fewis, 19662 Durbin. 1967]. the runs test [Law and Kelton 2000] and a variance heterogeneity test [Cox
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and Lewis, 1966]. Even il a sct of aumbers passes alb the tests, there is no guarantee of randommess: it 1
alwavs possible that some underlying pattern has gone undetected.

In this book. we emphasize empirical tests that are applicd wo actual sequences ol numbers produced be
a eencrator, Because of the extremely dong period of modern pseudo-random-number generators. o
doseribed in Section 7.3.2. 11 is no longer possible o apply these tests o a significant portion ol the period
of such senerators. The tests can be used as a cheek it one encounters a generator with completely unknov
properties (perhaps one that is undocumented and buried deep in a software pachage). but they cannot by
wsed 1o establish the quality of a generator throughout its period. Fortunately. there are also families o
theoretical tests that evaluate the choiees for . and ¢ without actually generating any numbers. the mov
common being the spectral test. Many o these tests assess how A-tuples of random numbers Bl ap o
A-dimensional unit cube. These tests are bevond the scope of this book: see. tor instance. Ripley [1987]

[n the examples of wests that follow, the hypotheses wre not restated. The hypotheses are as dicated
the torevoing paragraphs. Although fow simulation anady sts will need o perforn these tests, every simula
tion user should be aware of the gualities of @ good random-number generator.,

7.4.1 Frequency Tests

A basic test that should always be performed o validate o new generator is the test of antformity. Twe
ditferent methods of testing are available. They are the Kolmogorov-Smirnos and the chi-square test. Botk
of these tests measure the degree of agreement between the distribution of @ sample of generated randon:
numibers and the theoretical unitorm distribution. Both tests are based on the null by pothesis of no significant
difference between the sample distribution and the theoretical distribution,

1. The Kolmogorov--Smirnov test This test compares the continuous cdts /oo of the uniform distribu
tion with the cmpirical ¢df. Sy, of the sample of N obeervations, By defminion.

Fovy=a, 0<yv<

[F the sample from the random-number eoneratoris KR oK then the empinical edt Sy v s defined by

, number of R.R... R which are < o
S ot = ——
A

As N becomes lareer. Sy v should become a better approximation o £0u, provided that the null hypothesi
Is true.

[n Section 5.6, empirical distributions were deseribed. The cdf ol an empirical distribution is a step fune-
tion with jumps at cach observed value. This behavior was illustrated by Example 5.35.

The Kolmogorov-Smirnov test is based on the largest absolute deviation between Fov and Sy over
the range of the random variable—that is, it is based on the statisue

D= max}Feey = Sy (7.3

The sampling distribution of 72 is knownz it is tabulated as a function of Vin Table ALK For testing agains

auniform cdf. the test procedure follows these steps:
Step 1. Rank the data from smatlest 1o fargest fet R denote the st smadlest observation. so that

R, ZR.< <R,
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Step 2. Compute

D =max {l\’ ! Il
o S

Step 3. Compute D = max(D. D ).

Step 4. Locate in Table A8 the critical value. D . for the specitied significance level o« and the given sample
size N

Step 5. 1t the sample statistic £ is greater than the critical value. 1), the null hypothesis that the data are
sample from o unitorm distribution is rejected. 1 D < D, conclude that no difference has been detected
between the true distribution of (R, R+ ... R} and the uniform distribution.

Example 7.6 -
Suppose that the five numbers 044 0.8 10,14, 0,05, 0.93 were generated. and it is desired 10 perform a test tor
uniformity by using the Kolmogorov-Smirnov test with the level of significance o = 0.05, First. the numbers

must be ranked from smallest to largest. The calculations can be facilitated by use of Table 7.2, The top row
lists the numbers from smallest (R ) to largest « R,<,). The computations for - namely (/N — R, and for 1)
namely R, ~ i = D/N, are casily accomplished by using Table 7.2, The statistics are computed as 17 =0.26
and 1) = 0.21. Therefore, 1) = max{0.26. 0.21] = 0.26. The critical value of 1. obtained from Table AN for
o= 0.05and N =515 0.565. Since the computed value, .26, is less than the tabulated critical value. 0.565. the
hy pothests that the distribution of the gencrated nambers is the uniform distribution is not rejected.

The caleutations in Table 7.2 are illustrated in Figure 7.2. where the empirical cdf. Sy, is compared
to the unitorm edf. Fevy Tecan be seen that 2 is the largest deviation of Sy above F(x). and that 1) s the
largest deviation of Sy (x) below Fy). For example. at R .. the value of D' is given by 3/5 - R, =0.60 =044 =
0.16.and that of D7 is given by R (|~ 2/5 = 0.44 = 0.40 = 0.04. Although the test statistic D is defined by
Equation (7.3) as the maximum deviation over all x. it can be seen from Figure 7.2 that the maximum devi-
ation will always oceur at one of the jump points R, . R . ...2 thus. the deviation at other values of 4 need
not be considered.

2. The chi-square test. The chi-square test uses the sample statistic

where O, s the observed number in the fth class. £, is the expected number in the ith class. and 7 is the
number of classes. For the unitorm distribution, /.. the expected number in cach class is given by

Table 7.2 Calculations for Kelmogorov-Smirnov Test

: ., - _ ‘
[ R, 0.5 014 044 081 093
i 1N 0.21) 0.40 0.60 (.80 oo

iIN - R 0.15 0.26 0.16 0.07 i

‘ R~ (- 1\ 0.03 : 0.04 0.1 013
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for equally spaced classes. where N is the total number ol observations. It can be shown that the sampling

1.0t

0.9

0.8

0.7

Cumulative probability

fi.\)//'
- //
016 / Syl
- 0.04
1
- Lone 7
0.26
! //
0_15/
//
0.05
; 1 i !
0.1 0.2 0.3 0.5 0.6 0.7 0.¥ 0.9 1.0
R”, R‘j, R.h Rul Rr\'»

Figure 7.2 Comparison of Fi1) and Syix).

distribution of 7 is approximately the chi-square distribution with n — 1 degrees of freedom.

Example 7.7

Use the chi-square test with & = 0.05 to test for whether the data shown next are uniformly distribu
Table 7.3 contains the essential computations. The test uses n = 10 intervals of equal length, namely [0, 0.1).
[0.1.0.2), .... [0.9. 1.0). The value of y3is 3.4. This is compared with the critical value ¥ sy = 160.9 from
Table A.6. Since y7 is much smaller than the tabulated value of Xioso- the null hypothesis of a uniform

distribution is not rejected.

0.34
0.83
0.96
0.47
0.79
.99
0.37
0.72
0.06
0.18

Different authors have offered considerations. concerning the application of the x* test. In the application
10 o data set the size of that in Example 7.7. the considerations do not apply-—that is, if 100 values are in the

0.90
0.76
0.99
0.30
0.71
0.17
0.51
0.43
0.39
0.26

0.25
0.79
0.77
0.17
0.23
0.99
0.54
0.56
().84
0.97

0.89
0.64
0.67
0.82
0.19
0.46
0.01
0.97
0.24
0.88

.87
0.70
0.56
.56
0.82
0).05
.81
0.30
0.40
0.64

0.44
.81
0.41
0.05
.93
1).66
1).28
1).94
1).64
.47

0.12
0.94
0.52
0.45
0.65
0.10
0.69
0.96
0.40
0.60

0.21
0.74
0.73
0.31
0.37
0.42
0.34
.58
0.19
0.11

0.46
0.22
0.99
0.78
0.39
0.18
0.75
0.73
0.79
0.29

0.67
0.74
(102
0.05
042
049
0.49
(.05
0.62
0.7%
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Table 7.3 Computations for Chi-Square Test

| (O —1F)
Interval () I3 O - (O~ I E
| s 10 -2 4 0.4
2 8 10 2 4 0.4
3 10 to 0 0 0.0
4 9 10 -1 | 0.1
S 12 () 2 4 0.4
O 8 0 =2 4 0.4
7 10 0 0 0 0.0
8 14 [0 4 16 1.6
9 10 [0 () 0 0.0
10 Il 10 | I 0.1
00 100 0 34

sample and from S w10 intervals of equal length are used. the test will be acceptable. In general, it 1s
recommended that 7 and N be chosen so that each £, > 5.

Both the Kolmogorov-Smirnov test and the chi-square test arc acceptable for testing the uniformity of
asample of data. provided that the sample size is large. However, the Kolmogorov=Smirnov test is the more
powerful of the two and is recommended. Furthermore. the Kolmogorov—Smirnoy test can be applied to
small sample sizes. whereas the chi-square is valid only for large samples. say N 2 50,

Imagine a setof 100 numbers which are being tested for independence. one where the first 10 values are
in the range 0.01-0.10. the second 10 values are in the range 0.11-0.20. and so on. This set of numbers would
pass the frequency tests with case, but the ordering of the numbers produced by the generator would not be
random. The test in the next section of this chapter is concerned with the independence of random numbers
that are generated.

7.4.2 Tests for Autocorrelation

The tests for autocorrelation are concerned with the dependence between numbers in a sequence. As an
axample, consider the tollowing sequence of numbers:

012 0.01 0.23 0.28 0.89 0.31 0.04 0.28 0.83 0.93

0.99 0.15 0.33 0.35 091 041 0.60 0.27 (.75 0.88

0.68 0.49 0.03 042 095 0.58 0.19 0.36 0.69 0.87
Cromeavisual inspection. these numbers appear random. and they would probably pass all the tests presented
to this point. However, an examination of the Sth. 10th. 15th (every five numbers beginning with the fifth),
and so on.indicates w very large number i that position. Now. 30 numbers is a rather small sample size on
which to reject a random number generator. but the notion is that numbers in the sequence might be related.
In this particular section, @ method for discovering whether such a relationship exists is described. The rela-
tionship would not have to be all high numbers. [tis possible to have all low numbers in the locations being
sxamined. or the numbers could alternate from very high o very low.

The test to be described shortly requires the computation of the autocorrelation between every m num-

bers (nis also known as the lag). starting with the ith number. Thus. the autocorrelation P between the
tollowing numbers would be of interest: K. R0 Rove o Ry 00 The value M is the largest integer such



234 DISCRETE-EVENT SYSTEM SIMULATION

<-— Fail toreged -

Figure 7.3 Failure to reject hypothesis.

that 7+ (M + D < N where A is the total numbcr of values in the seyuence. (Thus. @ subsequencee ot length
A+ 2is being tested.)

A nonzero autocorretation implies a lack of independence. so the following two-tailed testis appropriate:
H, o p, =1

H oo op, 30

For targe values of M. the distribution of the estimator of p,,,. denoted P is approximately normal it the
values R R SR, ., are uncorrelated. Then the test statistic can be formed as follows:

e H:m‘-'

which is distributed normalty with a mean of zcro and a variance of 1. under the assumption of independ
ence. for large M.

The formula tor D,,,. in a stightly different form. anc the stundard deviation ot the estimator, (T}l,. are
aiven by Schimidt and Taylor [1970] as Tollows:

. l \/
P, R R 0.25
M+ z
and
VI3 T
ll( Ml
Atter computing Z,,. do not reject the nutl hypothesis of independence it =z, - £ Z, < 5,0 where o/ s the

level of \wnmumu and 2, - is obtained from Table A3, Figure 7.3 illustrates this test.

It p,, > 0. the subsequence is said to exhibit positive autocorrelation. In this case. successive values
lag mhave a hwhu probability than expected of being close in value (e high random numbers in the sub
sequence followed by high. and low followed hy low). On the other hand. it p,, < 0. the subsequence 1
exhibiting negative autocorrelation. which means that low random numbers tend to be followed by high ones,
and vice versa. The desired property, independence (which implies zero autocorrelation). means that there 1
no discernible relationship of the nature discussed here Ferween successive random numbers at lag n.

Example 7.8 _ S -
Test for whether the 3rd. 8th. 13th. and so on, numbers 1 the sequence at the beginning of this section i

autocorrelated using ¢ = 0.03. Here. i = 3 (beginning with the third numbery. m = 3 tevery five numbers
N = 30 (30 numbers in the sequence). and M = 4 (largest integer such that 3 + (M + D)3 = 30). Then.
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. I ) . ) - -
- | ]|1H 20028 (0281033 < (0300 27 = (0.27)(0.05)
H 00D 560~ 025
o OdR

and

34+ 7 )
= ¥ ~ (L1280

24+ 1
Fhen the test statistic wssumes the value
(1945 _
AR U S
(1280
Now, the eritical value trom Table A3 s
Sooes = 190

Theretore, the hypothesis of independence cannot be rejected on the basis of this test.

[Ucan be ohserved that this testis nosvery sensitive for small valies of M. particularly when the nuni-
hers hetng tested are on the Tov side. Tnsagine what would happen i cach of the entries in the foregome
computation of £, were equal to zero. Then P would be cquat to - 0.25 and the caleulated 7 would have
the value of =195 not guite enough (o reject the hyvpothesis ot independence.

There are many sequences that can be formied in a set of data. given a large value of A, For example.
begimning with the firse number i the sequence. possibilities include (1) the sequence of all numbers. (25 the
sequence tormed from the fust third. it . sumbers. (5 the sequience formed tfrom the first, fourth, .
numbers.and so on e = .03, there is a probabil ty of 0,03 of rejecting a true hypothesis. Tt 10 independent
sequences are examined. the probability of finding no signiticant autocorrelation, by chance alone. is (0.95)1"

w 0.00. Thus, 404 of the time significans autocorrelation would be detected when it does not exist. If o is
LEOand 10 tests are conducted. there is a 65% chance of finding awtocorrelation by chance alone. In con-
Stustons i Tfshing™ tor autocorrelation by performing numerous tests. autocorrelation might eventually be

detected, perhaps by chance alone. ¢

ven when there is no aatocorrelation present,

7.5 SUMMARY

Phis chapter deseribed the generaton of random numbers and the subsequent testing of the cenerated
wmbers tor uniforminy and independence. Random numbers are used to sencrate random variates. the sub-
cot ol Chaprer &,

OF the many types of random-number gencrators available. ones based on the linear congruential
nethod are the most widely used. but they are heing replaced by combined Tinear congruential generators.
D the miany vpes of statistical tests that e used in (esting random-number generators. two different tvpes
sredeseribed: one testing for umiformity, and one esting for independence.

The simulation analy st might never work directly with o random-number generator or with the testing of
sandom numbers from a generator. Most computers and sirmulation languages have routines that generate o
sindom number. or stcams of random numbers, for the asking. But even gencrators that have been used for
searse some ol which are sulin uses have been foand o he inadequate. So this chapter calls the simulation
analysts attention 1o such possibilities. with a warring o investigate and confirm that the generator has been
tosted thoroughly. Some rescarchers have attained sophisticated expertise in developmge methods for generating
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and testing random numbers and the subsequent application of these methods. This chapter provides only
basic introduction to the subject matter. more depth and breadth are required for the reader to become aspecia
list in the area. The bible is Knuth [ 19981 see also the reviews in Bratley. Fox. and Schrage [T996] Law und
Kelton [2000]. L'Ecuyer [ 19981, and Ripley [1987].

One final caution is due. Even if generated umbers pass all the tests (those covered in this chapter and
those mentioned in the chapter). some underlying pattern might have gone undetected without the generator’™
having been rejected as Faulty. However. the generators available in widely used simulation fanguages have
been extensively tested and validated.
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EXERCISES
1. Describe a procedure to physically generate random numbers on the interval [0, 1] with 2-digit accurac
(Hint: Consider drawing something out of a hat.)

2. List applications. other than systems simulation. tor pseudo-random numbers—for example. video
gambling games.
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3.

10,

How could random numbers that are unitorm on the interval [0, 1] be transformed into random numbers
that are uniform on the interval |11 17]2 Transformations (o more general distributions are described
in Chapter 8.

Generate random numbers using multiplicative congruential method with X, = 5. v = 17, and m = 64
Repeat Exercise 4 with X, = 6. 7. and 8.

Generate four-digit random numbers by Tincar congruential method with X, = 21, ¢ = 34, and ¢ = 7.

The sequence of numbers 0.54.0.73.0.98. 0.1 and 0.68 has been generated. Use the Kolmogorov-Smirno

test with = 0.05 1o learn whether the Fypothiesis that the numbers are aniformly distributed on the interval
[0, 1] can be rejected.

Generate 1000 random numbers between 0 aad 99 using Excel. Conduct chi-square test with « = 0.03
and verify whether the numbers are uniformiy distributed.

Figure out whether these linear congruential generators can achicve 4 maximum period: abso. state
restrictions on X, to obtain this period

(a) the mixed congruential method with

a = 2081 7497670109
= 59 4620661, 568, 207
m o= 23

(h) the multiplicative congruential generator with

a =069, 06Y

(¢) the mixed congruential generator with
= -U)S]
« =247
ni = 236

(d) the multiphicative congruential eencrator with

a = 63507
=10
m=1024

Use the mixed congruential method o generate a sequence of three two-digit random numbers with
No=37a=7.¢=29 and m = 1O,
Additive congruential method employs the following expression to generate random numbers:

v

Voo =X+ X)) mod m

where Xy 1o X are the seeds and X, is the rew random number. Assuming n = 5. X, =20, X, =82,
No=42.X, =76, X = 59 and m = 100. generate 10 new random numbers.,

Write a computer program to generate random numbers using additive congruential method given m
bxercise 1.
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13, It X, = 3579 in Exercise 900, geacrate the nirst random nueber i the sequence. Compute the random
number to four-place accuracy.

14, Ivesticate the random-number gencraor ina spreacshect provram cnwcompater to which you hae
access, lin mainy spreadsheets. random numbers are geperated by i tunction calicd RAND or @ RAND

ta) Check the user’s manual to see whether 10 describes how the random numbers are generated.

th) Write mucros to conduct cach of the tests deseribed i this chaptor, Generate 100 sets of randon:
numbers. each set containing 160 random nun bers. Pertorm cach st one cach set of randon;
numbers. Draw conclusions.

15, Consider the muhiiplicative congruennad geverator urdzr the fellowmy circunistances.

fa) a=11.m=16.X,=7
(thy u=11.m=16_X,=1%
(¢) u=7.m=160X,=7
dy a=7.m=16.X,=8§

Generate enough values in cach case o conplete aevcles What infererces can be drien I MmN
period achieved?

16. For 16-bit computers. L Eeuver HHUSE] recommends combrning three multiphs ative geaerators, = i

iy = 32303 wp = 137 ms = 31,7107,

‘ (- == =00 = 21037 cnd aco= 1420 The pertod of tins generate

is approximately 8 < 1670 Generate S random numbers with the combined cencerator. using e i

weeds X, = 100, 200, 306, tor ihe individual generators 1= 10203

17. Scarch the web and find varons other methods of gencrating randont iinibers,

I8, Use the principles described in this chiapter to- deve op your own fmear congraential random-ntimbes

cenertor.

19. Use the principles described i this chapter o develop vour ow i combined Ticas congrucntial rando

number generator.
200 The following is the set of single-divit numners fronna randent number conerater.

6 7 4) O Y 9 0 f 4 8

4 () N N 8 O | ! O N
3 O 0 4 7 ! 3 3 () 7
] 4 Y S 6 () 9 fy 6 7
| 0 4 7 ) M 0 | 3 S
6 D] 7 7 h] 4 2 3 3 3
O {) 3 3 2 S N N 3 |
4 () S | 7 ) ) 6 2 N
3 O U N 0 O Y () 0
3 | A 4 A S 3 3 2 i

Csing appropriate test cheek whether the numbers are untfoniiy distributed.

21 Insomie applications. iis usetul o be able o quickiy skip abcad i psetdosiandent BUmber seguvi

without actually eenerating all oi the intermediate vactes. to) For a hoew congraential zenerator w ih
e 0L show that N = (N 1 med o (B Neat showe that o YVovmod i = tat mod o Xomod e

result is uselul because ¢ mod arcin be precomptired. making 1t essy o skip ahead 1orandom number

from any point in the sequenced. o b Exarple 730 e this esditie compuie A starting with X - 6
Check vour answer by computing N the usaad wis



Fhis chapter deals with proceaures tor sampling from a saricty of widelv-used continuous and discrete
distibutions. Previous discossions and examples mdicated the usefulness of statistical distributions i model-
iy activities that are generally impredictable or uncertain. For example. interarrival times and service times
at queues and demands for a product are quite often unpredictable in nature. at least 1o a certain extent
Usaally. such variables are modeled as rardom vartables with some specitied stadistical distribution, and stan-
dard statistical procedures exist for estimating the parameters of the hy pothesized distribution and for testing
the validity of the assumed statistical mocel. Suck procedures are discussed in Chapter 9.

In this chapter. i is assumcd that o arstribution has been completels specified. and ways are sougit 1o
cencraie samples from this distribution (e be usec as input o a ~imutation model. The purpose of the chap-
ter s o explam and tusirate sonie widels used techniques tor cenerating random variates. not w0 give a
state-of-the-art surves ol the most etficient echnigques In practice. most simulation modelers will use cither
sxisting routines avalable i prograniming ibraries or the routines built into the simulation language being
used. However, some programming langrages doy not have buift-in routines for all of the regulurly used
Jistributions. and some computer mstallations do not have random-variate-generation libraries: in such cases
the modeler must construct an acceptable routine. Even though the chance of this happening is small, it is
nevertheless worthwhite to understand hov random-variate generation oceurs.

This chapter discusses the imverse-transtorns technique and. more brietly. the aceeptance-rejection tech
iigue and special properties. Another wechnigue. he composition method. is discussed by Devrove | 19861,

H

Digpunar [TOSS] Fishman [TO78] and Law and Kelton [20001 All the technigues in this chapter assume

hat o source ol unitorm PO rondom numbers, KR is readihy available. where cach R, has pdt
. [ 0 v
folv) =9 ]
!()\ otherwise

239
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and edf

Jn. vl
Fao=av 02yl
]l. AN

Throughout this chapter R and R,. R+, ... represent random numbers uniformly distributed on {0.1] and gener-
ated by one of the techniques in Chapter 7 or taken from a random number table. such as Table AL

8.1 INVERSE-TRANSFORM TECHNIQUE

The inverse-transform technique can be used to sample from the exponential. the unitorm. the Weibull. the
triangular distributions and from empirical distributions. Additionally. it - the underlyving principle for
sampling from a wide variety of discrete disteibutions. The technigue will be explained in detail for the expo-
nential distribution and then applicd to other distributions. Computationally. it is the most straightforward.
but not alwavs the most efficient. technique.

8.1.1 Exponential Distribution

The exponential distribution. discussed in Section 5.4 has the probability density function (pdf)

/‘L('/\. v 0
)=

and the cumulative distribution function (cdt)

o \"Jﬁv./'('“/’—{:) TR )

The parameter A can be interpreted as the mean number o oceurrences per time unit. For example. it inter
arrival tmes X Xs, Xy o had an exponentiai distribution with rate Ao then A could be interpreted as the
mean number of arrivals per time unit. or the arrival rate. Notice that. for any 7.

and so /A is the mean interarrival time. The goal here is te develop a procedure for generating values XX
X.. ... that have an exponential distribution

The inverse-transform technique can be utilized. at least in principle. for any distribution, but it is mos
useful when the ¢df. Fx). is of a form so simple that its inverse. /7' can be computed easily.” One step-by-
step procedure for the inverse-transtorm technigue. ilfustrated by the exponential distribution. consists of the
following steps:
Step 1. Compute the cdf of the desired random variable X
For the exponential distribution. the cdt is Flyy = I—¢ o,
Step 2. Set £1X) = R on the range of XL
For the exponential distribution. it becomes 1—-¢ = R on the range v 2 0.

The notation £ denotes the solution o1 the equation 7 = Fov i tesmis of oot does notdenote 1F
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isacrandon variable twith the exponential distribution in this case), so 1 — ¢V is also a random variable.
fere called R As will be shown fater. R has a uniform distribution over the interval [0, 1].

Step 3. Solve the equation F(X) = R for X in terme of R,

For the exponential distribution. the solution proceeds as follows:

l—¢ ‘=R
¢ /’\ZI—R
AX = Intl = R)
|
X=——In(l=-RK) 18 1)
A

Fquation (8.1 1s called a random-variate generator “or the exponential distribution. In general. Equation (8.1
rowritten as X = /7 (R). Generating a sequence of values is accomplished through Step 4.

Step 4 Generate as neededy unitorm random numbers R0 R+ K. ... and compute the desired random
vAres by

= F AR

For the exponential case. F (R = (=1/4) In(] = Ry by Equation (8.1). so

X =-=—Inl-R) (8.2

'

~

tor /=123 One simplification that is usually emploved in Equation (8.2) s to replace 1 = R by K. 1o vield

|
X =——InR (8.3
A

Fhis alternative is justified by the fact that both R and 1 — R, are uniformly distributed on [0.1].

Example 8.1
Fable 8.1 gives a sequence of random numibers from Table A.1 and the computed exponential variates. X,

2en by Equation (8.2) with the value A= 1. Figure 8.1(a) is a histogram of 200 values, R, K. ... R, from
the unitorm distribution. and Figure 8.1¢h) is a histogram o1 the 200 values. X . Xoo oo X computed by

Fquation (8.2). Compare these empirical histograms with the theoretical density functions in Figure 8.1(¢)
and (d). Asillustrated here. a histogram is an estimate of the underlying density function. (This fact is used
- Chapier 9 as a way to identify distributions.)

Table 8.1 Generation of Exponential Variates X, with Mean 1
given Random Numbers &,

’

Jf i 4

]
|

R, 0.1306 (L0422 0.6597 ().7965 (.7696 ’
X 01400 00431 1.078 1.5392 1408
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Figure 8.1 (a) Empirical histogram of 200 unifcrm random numbers; (b) empirical histogram of 200 exponentic|
variates; (c) theoretical uniform density on [0, 1]; (d) theoretical exponential density with mean 1.

Figure 8.2 gives a graphical interpretation of the inverse-transform technique. The cdf shown is fv)
I—¢ ' an exponential distribution with rate A= 1. To gererate a value X, with edf Fv). a random number R
between O and 1 is generated. then a horizontal line is drawn from R, to the graph of the cdt. then a vertical fire
is dropped to the vaxis to obtain X . the desired result. Notice the iverse relation between K, and XL namels
Ri=1-¢}
and
X, =-Intl = R))
[n general. the relation is written as

R, =F(X))
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(o ] o

RS et -

0 N Xy el Rp i v

Figure 8.2 Grapnical view of the inversetransform technique.

and
X, =F YR

Why does the random variable X, eencrated by this procedure have the desired distribution”? Pick a valtue v,

and compute the cumulative probability
PX S x0) = PR, < Flyy)) = F) (8.4

losee the first equality in Equation (8.4, refer to Figure 8.2, where the fixed numbers x, and £(x,,) are drawn
o ther respective axes. Tt can be seen that X, < v, when and only when R < F(x). Since 0 < Fiy,) < 1. the
~second equality in Equation (8.4 follows immeduately from the fact that Ry is aniformly distributed on [0.1].
Cquation (8.4 shows that the edf of X is F7 hence. X, has the desired distribution.

3.1.2 Uniform Distribution
Consider arandom variable X that is uniformly distributed on the interal [eo D)o A reasonable guess for
cenerating X is given by
X=u+bh-uwR (8.5)
[ Recall that R is always a random number on [0. 1] The pdf of X is given by
I

—. ad<x<h

/(.\)~]/)(l

(0. otherwise

Fhe derivation of Equation (8.5) tollows Steps 1 through 3 of Section 8.1.1:
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Step 1. The ediis given by

(). V<
=
Flyv)y=q——- )

iheu
| )

Step 2. Set FINy = (N —alth —ar =K.

Step 3. Solving for X i terms of R ywelds Y= + (h = @R whicly agrees with Equation (8.3)

8.1.3 Weibull Distribution

Fhe Weibull distribution was introduced i Section 5.4 as a model for rime 1o tailire Tor machines or elec
tronic components. When the Jocation parameter vis set 10 0. its pdfis ¢iven by Equation (5471

B
)= ](I"

0. atherwise

Gl vz

where > 0 and B> 0 are the scale and shape pararaeters of the distribution. To eenerate o Weibull variate. follew
Steps | through 3 of Section 8,11

Step 1. The edtis given by FiX)=1-¢ " @ xz 0,
Step 2.Sct F(X)y=1-¢ """ =R,
Step 3. Solving for X interms of R vields

N =gl -ncl - ) (5.6
The derivation of Equation (8.0 is feft as Exercise 10 for the reader. By comparing Equations (3.0) and (8.1). 1
can be seen that, it X is a Weibull variate. then X7 s an exponential variate with mean ol Conversely it Yis ar
cyvponential variate with mean g then YEB iy a Weibull variate with shape parameter 3 and seale parametet
o=
8.1.4 Triangular Distribution

Consider a random variable X that has pdt

J\-. N <

Jtvy=q42—n0 < s s
] 0. otherwise

as shown in Figure 8.3, This distribution is callec a triangular distibution w ith endpoints (0. 2) and mode at 1.
Its cdt is given by

0 vE )
A
—— (AR
bl
Foo=15 7 i
) e
e |y
N 2
| v 2
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JARN!

() | > \

Figure 8.3 Density functior for a pa-ticular triangular distribution.

ForO< X <],

and for 1< X <2,
R=]—-—_ L (SN

By Lquation (8.7). 0< N < L imphes that 0< R < < in which case X = v R By Equation (S.8), I < Y <2

mphies that = < K< 1o which case X =2+ 201 = Ry Thus, X is generated by

DR <R
- ,\ ) (8.9

2o =R e R

Exercises 203 and 4 aive the student prisctice i dealing with other triangular distributions. Notice that. i
the pdband edf ot the random variable X come in parts (Lew require different formulas over different parts
of the range of Xoothen the application of the inverse-transtorm iechnique for eenerating X will result m
separate formalas over different parts of the range of Roas in Equation (8.9, A general form of the triangulan
distribution was discussed in Section 3.4,

8.1.5 Empirical Continuous Distributions

I the modeler has been unable o find a theoretical distribution that provides a good model for the input data.
then temay be necessary to use the empirieal distriibution of the data. One possibility is to simply resample
the observed dataitsell. This s known as using the empirical distribuzion. and it makes particularly good
sense when the mput process is known to take onca finite number of values. See Section 8.1.7 for an example
ot this type of sitation and foromethod for generating random inputs.

On the other hand. it the dacacare deassn from what is belicved to be a continuous-valued input process.
then st makes sense to mterpolate betweer the observed data points o il in the gaps. This section deseribes

amcthod for defining and generating data from a continuons empirical distribution,
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Example 8.2 - .
Five observations of fire-crew response times (in minutes) :o incoming alarms have been collected to be used
in a simulation investigating possible alternative stafting and crew-scheduling policies. The data are

2.76 1.83 0.80 145 124

Betore coliecting more data. itis desired to develop a prelimimary simulation model that uses a response-time
distribution based on these five observations. Thus. a method for generating random variates trom the
response-time distribution is needed. Initiadty. it will be assumed that response times X have arange 0 £ X = o
where ¢ is unknown. but will be estimated by ¢ = max{X, ;7= l.....n} =276, where { X 1= 1.} are the
raw data and n = 515 the number of observations.

Arrange the data from smallest to Targest and let v, € v, < < v denote these sorted values. The
smallest possible value is believed to be 0. so define v, = 0. Assign the probability /0= 1/5 to cach interval

Table 8.2 Summary of Fire-Crew Response-Time Data

Interval Probabiliry Cunnilative Nlope
i (TR S-S W 1/n Probability, i/n @,
| 00 < v<080 0.2 0.2 4.00 i
2 080 << 1,24 0.2 0.4 2200
3 [24<v< 143 0.2 0.6 .05
4 A4S < v s 1IR3 0.2 (.8 .90
L s 183 < 12276 0.2 L0 165
IR
1 (276,140
1.0 /—-—>
0.8 (1.83. 0.30)
T O A R
g 0.6 (1.45.0.60)
= 04 (1.24. 040
5 . 5
0. (0.80.0.20 N 145 100071 06t L6
(0. h ;
0 0n.s 1.0 bt o0 hi 30 \

Response times

Figure 8.4 Empirical cdf of fre-crew response times.
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U s g as shownin Table 8.2 The resulting empirical edf. £oo s illustrated in Figure 8 4. The slope
of the /th line segment is given by

Y v v
(=7 o e
iln—(—~1!n I7n
Phe inverse edfis caleulated by
I v h i
X=F (Ry=x , +u|R-- (8. 1h
"

when (/= Di/in < R < i/n.
For example. it a random number £, = 0.71 i generated. then R, is seen to lie in the fourth interval
“hetween 3/5 = 0.00 and /5 = ¢.80): so. by Equation (8.10),

XN o=, ba R =D
= 1AS 4 1900071 - 0.60)
= 1.66

Ihe reader is referred 1o Figure 8.4 tor o craphical view of the eencration procedure.
R : R I

[n Example 8.2, cach data pomt was represented in the empirical edf. 1 a Targe sample of data is avail
able tand sample sizes from several hundred 1o tens of thousands are possible with modern. automated data
collection). then it might be more convenient tand computacionally efficienty 1o first summarize the data into
adrequency distribution with a much smaller number of intervals and then fit a continuous empirical ¢dt 1o
the frequency distribution. Only a shight generalization of Equation (8.10) is required to accomplish this.
Now the slope of the ith line segment is given by

where ¢ s the cumulative probability of the first intervals of the frequency distribution and v, | < <y
i~ the dth interval. The iverse edf is calculated as

N=F Ry =x o (R (8115

whene, | <R <¢,.

Example 8.3

Suppose that 100 broken-widget repair times have been co'lected. The data are summarized in Table 8.3 in
terms of the number of observations in various intervals. For example. there were 31 observations between
Vand 0.5 hour, 10 between 0.5 and 1 hour, and so on. Suppose it is known that all repairs take at least 13
minutes. so that X' 2 0.25 hour alwavs. Then we scty, = 025 as shown in Table 8.3 and Figure 8.5.

For example. suppose the first random number cenerated is R, = 083 Then, since R, is hetween
= 0.66 and ¢, = 1.00.

Xi=v v agR -y =15+ 147085 - 0.66)=1.75 (812
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Table 8.3 Surimary of Repair-Time Data

T - Tttt T
! Inrerval Relanive Crmnnleitive Slope
I [ (Hours) Fregueney Fregueney Frequerey, ¢ a
| . - e .
| 025 < v 03 3 .31 TRy 081
1 2 10 0,10 04 S0
‘ 3 23 .25 0.60 200
‘ | 1y 034 1.0 147
Fov o
1.0
R [0 T S e
0N
; (1,50, 0.6
= 0.0
] 04 (.00, ¢4
[
1030, 0.31)
0.2
i
L I |
( N ) 3 20
) 0s v I s 4 1 C e

Reparimes

Figure 8.5 Generating variates from the empirical distribution function for repairtime data (V' - 0.25]

A~ another illustration, suppose that R- = 0.33. Since ¢, = 031 <R 2041 = ¢

X =x, +da(R, -¢)
=0.5+5.000.33-0.31
=0.0

e point (R.=0.33. X, = 0.6) is also shown in Figure 8.5,

Now reconsider the data of Table 8 3. The data are restricted in the range 0.25 < X' < 2.0, but the underlying
distribution might have a wider range. This provides one important reason for attempting to find a theoretical
statistical distribution (such as the gamma or Weibull) for the data: that these distributions do allow a wider
rance ——namely, 0 < X < oo, On the other hand. ar empirical distribution adheres closely 1o what is presentin
the data itselt. and the data are olten the best source of information available.

When data are summarized in terms of frequencey ntervals. it is recommended that relatively short
intervals be used. for doing so results in @ more accurate portrayal of the underlying cdf. For example. for
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terepair-time data of Table 8.3, for which there were 1= 100 observations. @ much more accurate estimate
could have been obtained by using 1010 200 intervals. certainly not an excessive number. rather than the tour
coohewide intervals actually used Fere tor purposes of tustration.

Several comments are i order:

L. A compuierized version of the procedure will become more mefficient as the number of intervals., 7.
nereases. A systematic computerized version is often cailed a table-lookup generation scheme.
because. given a value of R, the computer program must ~earch an array of ¢, values to find the
interval £ nowhich K lies, numely the iterval @ satistying

< R<e

The more itervals there are. the fonger on the average the scarch will take i it is implemented in the
crude way described here. The analyst should consider this trade-off between accuracy of the esti-
nting cdt and computational etficiency when programming the procedure. If a large number of
observations are available. the analys may well decide 1o group the observations into from 20 to 50
itervals tsayi and then use the procedure of Example 8.3 —or a more efficient table-lookup proce-
dure could be used. such as the one described in Law and Kelton {2000

2. In Example 82010 was assumed that response times X satistied 0 < X < 2.76. This assumption led to

the mclusion of the pomts 1y, = 0 and v, = 2.76 in Figure 5.4 and Table 8.2, 1f it is known a priori
that X falls in some other range. for examplel i it is known that response times are always between
15 seconds and 3 mmutes —that is.

0.252X <30

—then the points v = 025 and v = 3.0 would be used o estimate the empirical ¢df of response
tmes. Notice that. because of inclusion of the new point v, . there are now six intervals instead of
fives and cach interval is assigned probabilite 1/6 = 0.167.

8.1.6 Continuous Distributions without a Ciosed-Form Inverse

Acnumber of usetul continuous distributions ¢o not have a closed form expression for their cdt or its inverse:
cvaonples include the normal. gamma and neta disiributions. For this reason. it is often stated that the
iy orse-transform technique for random-varicte generation is rot wvailable for these distributions. 1t can. in
cieetsbecome avatlable it we are willing o anproxinate the inverse edft or numerically integrate and search
o adt Although this approach sounds maccurate. notice that even a closed-form inverse requires approxi-
rison moorder o evaluate 1t on s computer. For example. penerating exponentially distributed random
varrates Vi the inverse edf Y = 7 WR) = ~Int ] = R)/A requires o numerical approxsmation for the logarithm
turction. Thus, there is no essential ditference between using an approximate inverse cdf and approximately
ccaditing a closed-form inverse. The problerm with using approximate inverse cdts is that some of them are
onputationally slow o evaluate,
o tlustrate the ideda. consider asimple approximation to the inverse edt of the standard normal distri-
woron proposed by Schmerser [ 1979
SRA R "
e og Mo ZdER
0. 1975
Vaes approximation gives at least one-decimul-place accuracy tor 0.0013499 <0 R < (.9986301. Table 8.4
cripares the approximation with exact values o four decimal plucesy obtained by numerical integration for
soccral vadues of RO Much more accurate approximations ex st that are only shightly more complicated.

v coed source of these approximations for a number of distributions i~ Bratley. Fox. and Schrage [1996].
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Table 8.4 Comparison of Approximate Inverse with
Exact Values [To Feur Decimal Places' for the Standard
Normal Dist bution

S e SO

R Approximate Inver foaact fnver

0.0 23263 -2 330)

o010 12806 -1 2818

TS 06745 00713
L o0so 0.0000 0000 1
T 0.6743 06713 :
[T L2816 JONEA :

1y un 23203 IR

8.1.7 Discrete Distributions

A diserete distributions can be eenerated vie the imve se-transform technique. either numerically througts
tuble-lookup procedure or, i some cases. aleehraica Iy, the final generation scheme being in terms o
formula. Other techniques are sometimes used for certe in distributions. such as the comolution technigue

the binomial distribution. Some of these methods are discussed in fater sections. This subsection gives examyple
covering both empirical distnbutions and two of the stundard diserete distributions, the tdiscrete) unitor

and the eeometric. Highly efficient table-lookup procedures for these ond other distributions are tound
Bratley. Fox.and Schrage {19961 and in Ripley [TO87

Example 8.4:  An Empirical Discrete Distribution —
At the end of any day. the numiber of shipments on the L ndnw cock ml lln HI\\ Company (\\Inm main piead

et is the famous “incredibhy huge widget™) is either o Toor 20with observed relative frequency of oot
rence of 0,500 02300 and 0200 respectively. Internal .;«m\ull;ml\ hianve been asked o develop a mode o
inprove the efficiency of the loading and hauting operations: as part ol this model. they will need to be e
(o eenerate values. XL to represent the number of shipments on the Toading dock at the end of cach dhin
The consultants decide o model N as a diserete random variabic with the distribution given in Table 8.5 o
shown i Figure 8.6,

The probability mass tunction (pmly. p el is given by

POy =P =0y =0 30
pitiy=PN =1H=230
Py =P =2y=0.20

Table 8.5 Cistributicn of
Number of Sh pments, A
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RS

0 | 2 v

S

Figure 8.6 Cdf of number of shipments, V.

ad the edf /oo = POY < e is given by

) v )

0y 0<v<l
[N =

)8 <<

S 2<y

Recall that the edb of acdiserete randons vartable always consists of horizontal Jine segments with jumps
osize peyy at those points, g that the random variable can assume. For example, in Figure 8.6, there s &
cp ol size pthr =05 atv=0 ol size peir=00atv=Land ot size p(2ry =020t v = 2,

For generating discrete random variables, the inverse transtorm technique becomes a table-lookup pro-
dures buts unlike m the case of continuous variab esinterpolation is not required. To tlustrate the proce-
e, suppose that Ry = .73 15 generated. Graphicalbv, as illastrated in Figure 8.6, first locate Ry = 0.73 on
dhevertical axis next draw achorrzontal Tine segnment until it hits @ “jump™ 1 the odf. and then drop a per
nendicular o the horizontal axis o get the generated vartate. Here R == 0.73 18 transtformed 1o X, = 1. Thos
procedure is analogous o the procedure used for empirical continuous distributions in Section 8.1.5 and
Pustrated e Frgure S except that the fmal step. [ newr interpolation. is eliminated.

Fhe able-Tookup procedure is tacilitated by construction o a table such as Table 8.6, When R = 0,73
—oenerated. st find the mwerval m which R heso Ingenerad tor R = Rl

Fov =1 <R<r =0 (813
ienset Xy = a0 Hereor, = 00 ay = =00 s are the possible values of the random variable: and 7
oo s e pich = 1020 o Forthiseaampleo =300 = 00w = Toand a = 20 henee ry = 0.5, 70 = 0K,
nd 1.0 eNotice that £ = 1.0 m abl caseso

Table 8.6 Table for Gener-
ating the D s-rete Variate \

]

; lrpoan Oripit.
o J v
Lo L0 0
b (20 |
G

0 2
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Since 1, = 0.5 <R, =0.73< 5= 0.8 set Xy =x: = | The generation scheme is summarized as follow -

0. R<05
X=<l. 05<R<OX
2. 08<RSTO

Example 8.4 illustrated the table-lookup procedure: the next example iflustrates an algebraic approuct:

that can be used for certain distributions.

Example 8.5: A Discrete Uniform Distribution

Consider the discrete uniform distribution on { 1. 2. ... £} with pmt and cdf given by

]
Ha)==—., x=12.....4k
! k

and
0 v< |
wl, Plx<?
I8
5
=, <<
Fixy= 1k
k-1
— A=l <<k
k
] L<x

Lety,=iand r,=p (1) + -+ ple)=F) =itk fori= 1.2 k Then. from Inequality (8.13) it can be seen

that, if the generated random number R satisfies

- :
rj‘::l_~<f’f£r;:i (8.1

then X is generated by setting X = i. Now Inequality (8.14) can be solved for i

i—1<Rk-Z(
Rk <i< Rk+1 (8.1
Let] v1denote the smallest integer = v. For example. [7527=8 1513 =cand|=1.32]=— 1 For v, [

is & function that rounds up. This notation and Inequality (8.13) vield o formula for generating X, namely

X =[Re] (3.0
For example, consider the generating of « random variate X tha s uniformly distributed on {1 2.
The variate. X, might represent the number of pallets to be Toaded onto a truck. Using Table ALTas asource
of random numbers R and using Equation (8.15) with k = 10 yiclds



RANDOM-VARIATE GENERATION 253

R =078 X
=003 X

R =023 X =[23]=

R, =097 X

The procedure discussed here can be moditied to generate « discrete uniform random variate with any
range consisting of consecutive integers. Exercise 13 asks the student to devise a procedure for one such casc.

xample 8.6: The Geometric Distribution
Consider the geometric distributon with pmf

plo=pl-py. x=0.1.2...

where O < p <1 Tts edtis given by

Fy)y= :ip(] -

il
==

o= (-p)

=l-(l=-p

torv=0.1. 2. Using the inverse-transform techni jue [i.e.. Inequality (8.13)]. recall that a geometric random
sartable X will assume the value v whenever

Fa=h=1-(l-pr <R =(1-pr'=Fx) (8.17)
where Kois agenerated random number assumed 0 < R < 1. Solving Inequality (8.17) for x proceeds as tollows:

d=p) < 1-R<(l=py
(v+hintl=pr<sIntl =Ry < xlIn(l - p)

But I - p < Timplies that Incl = p) < 0. sc that

Inti— Ry In(l—-R)

<. — (8.181
Intt=p) In(l—p)

Thus. X = x for that integer value of x satisfying Inequality (8.18). In briet, and using the round-up function| - |.
we have

hna-m (8.10)
(1= py

Sinee p s a fixed parameter. let = --1/In(1 — p). Then B> 0 and, by Equation (8.19). X = [—ﬁ In(l - Ry -1 1
by Equation (8.1). = In(1 — R) ix an exponentially distributed random variable with mean B:so one way of
venerating a geometric variate with parameter p is to generate (by any method) an exponential variate with
parameter = ~In(1 - p). subtract one. and round up.
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Occasionally. there is needed a geometrie variate X that can assume values fog.oq + o+ 2o pwith pd
P = pl =yl =gog 4 Lo Such avariie X ocan be generated. viac Equation (819, by

) Incl = K
N=g+] | (.20

Inel =y

One of the most common cases is ¢ = 1.

Example 8.7 _ e R

Generate three values from a geometric distribution on the range (A 2 T with mean 20 Such o geometrie
distribution has pmf pexy=p b = py lov= 1020 o with mean Tye= 20or po= 172 Thuse Xcan be generated

by Equation (8.20) with ¢ = 1. p = /2 and Hinel — py == 1445 Using Tuble AVTUR, = 09320 R = 0103
and R = 0.687 vields
No= a3 I - 0932 1
=Ry -tl=4
Xo= a3 - 005 - 1=
N o=l - 0es7) - 1]=2

Exercise 15 deals with an application of the geometric distribution

8.2 ACCEPTANCE-REJECTION TECHNIQUE

Suppose that an analyst needed o devise a method for generating random s armates. A unitormiy distribute:d

hetween [/4 and 1. One way to proceed would be to follow these steps:
Step 1. Generate a random number R.

Step 2a. It R > 1/4 accept X = R. then goto Swep 3

Step 2b. It R < 1/4. reject R.and return to Step 1

Step 3. If another uniform random variate on [ 174, 1] is needec. repeat the procedure begmning at Step
If not. stop.

Fach time Step | is exccuted. a new randon number R mus. be generated. Step Zacis an “aceeptance
and Step 2b s a “rejection” i this acceptance-rejection technigue. To summart/ze the echnique. randoin
variates (R) with some distribution (here uniformon [0, 1) are generated until some condition (R = 1o
atisfied. When the condition is finally satisfied. the desired ramdom varicte. X chere unitormon {140 T
can be computed (X = R). This procedure can be shown to be correct by recognizing that the accepted vai
ues of R are conditioned values: that is. R itselt does not have the desired distribution. but R conditioned on
the event {R = 174} does have the desired distridution. To show this, tahe 14 = a < h < 1othen

. i ) Pia< < b - o
Pla<R<b1/4<R<h= DR (R0

P4 RS 34

which is the correct probability for a unitorm distribution on |14, T Equation (3.21) says that the proba
bility distribution of R. given that R is between /4 and 1 all other values of Roare thrown out. is the desired

distribution. Theretfore  if 1/4 SR < 1oset X = F.
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The efficieney of an acceptance- e cction technique depends heavily on being able to mimimize the
number of rejections. In this exansple. the probability of o rejection is (R < i/4) = 1/4. so that the number
of rejections is a gcometrically distributed random variable with probabilite of “sucecess™ being po== 3/4 and
mean number of rejections of/p = 1y = 3 =1 = FA0 (hxample 3.0 discussed the geometric distribution
The mean number of random numbers K requirad to generate one voriate N is one more than the number of
rejections: henees itis 3 = 1330 In other words, to generate 1000 values of X would iequire approximateh
F333 random numbers K.

In the present sttuation. ar alternatice procedure exists tor generating o wimform variate on [ /4 1]
namely. BEquation (3.5 which reduces 1o X = 1a + (3R Whether the aceeptance —rejection technique or
an alternatve procedure. such as the inverse-transtorm technique [hquation (835301 the more etficient
depends on several considerations, The computer being used. the skidls of the programmer and the relane
mefliciencey of generating the additional trejected) randon numbers needed by acceptance—rejection shouid
be compared to the computations required by the alternative procedure. In practice. concern with generation
criiciencey is deft to specialists who conduct extersive tests comparing alternative methods (e until a sim-
ulation model begins to require excessive compuier runtimie due o the cenerator being used).

i

U H the mverse-transtform technique of Equation (8.5) 1s undoubt

For the untform distribution on
cdiv much casier to apply and more etticient than the acceptance: rejection technique. The main purpose ol
this example was to explain and motivate the basic concep: of the acceptance rejection technique. However.
tor some important distributions. such as the norn al, cammia and beta. the iverse cdt does not exist in closed
torm and theretore the mverse-transforns technique is difficult. These more advanced techniques are sum
marized by Bratdey. Foxoand Schrage {1996]0 Fishman [ 1T978]. and Taw and Kelton [20001.

In the following subsections, the aceeptance: rejection technigue is tustrated for the generation ol ran
dom variates for the Poisson. nonstationary Poisson, and camma distributions

8.2.1 Poisson Distribution

A Poisson random varable. Nowith mean ¢ > 0 has pmt

pim s PN =y e o= 0020

More important. however. s that v can be interpreted as the number of arrivals from a Poisson arrival process
mone unitof time. Recall from Section 505 that the mterarrival umes. V4 ol successive customers e
exponentially distributed with sate o oc o0 is the mean aumber of arvivals per unit timey: in addition. an
exponential variate can be generated by Equation (8.3, Thus, there s relationship between the (discretes
Poisson distribution and the ccontinuous  exporetial distribution

N o=n (8.2
it and ondy il
B TS T IR G G T (823

Fguation (8.22)0 V= nosavs there were exactly 2 arrivals during one unit of time: but Relation (23) savs that
the ath arrival oceurred betore time Towhile the ¢ + Dist arvival occurred after tme [ Clearly. these
nwostatements are equinvalent. Preceed new by generating exponential mterarrival times until some arrival,
sav o+ Tooceurs after time Tothen set Vo= g

For efficient generation purposes. Kelation 18.23) is usualty simplitied by first using Equation (8. %)
Vo =1/ In R o obtam

vl Ink <1< v Ink
P

pa o - -
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Neat multiply through by —c. which reverses the sign of the inequahity. and use the fact that a sum of Togi
rithms is the logarithm of a product. to get

lnHR :ZlnR ZA{)(>§:IHI\' ;Innl\’

Finally. use the relation ¢ = v for any number v to obtain

]']R z("'>[1/e (824

which is equivalent to Relation (8.23:. The procedure tor generating a Poisson random variate. M. is given
hyv the following steps:

Step L. Setn=0. =1

Step 2. Generate a random number K, and rep ace Pby P - R
Step 3. 11 P < ¢ then accept N = n. Otherwise, weject the current 4. increase 2 by one, and return to step 2

Notice that. upon compiction of Step 2. F is equal to the rightmost expression in Refation (8,241
he basic idea of a rejection technique is again exhibitec: it £ 2 ¢ 7 in Step 3. then #is rejected and the
veneration process must proceed through at Teast one more trial.

How many random numbers will be required. on the average. to geaerate one Poisson variate. N
ItV = then 1+ | random numbers are required. so the wverage number is given by

FIN+Thh=a0- 1

which is quite large if the mean. . of the Poissoy distribution s farge.

Example 8.8 __ — S S
Generate three Poisson variates with mean ¢ = 0.2, First, compute ¢ = ¢ "= = 0.8187 Next. get asequenc
of random numbers R from Table A.1 and follow the previously described Steps 1o 3

Step L. Setn=0.P=1.

Step 2. Ry = 04357, P =1 R =0.4387

Step 3. Since P = 04357 < ¢ v = 08187 aceept NV =0,

Step 1-3. (R, = 0.4146 leads to V=00

Step 1. Setn=0.P=1.

Step 2. R, = 0.8353. P =1 - K = (0.8353.

Step 3. Since P 2 ¢ “oreject i = 0 and return to Step 2 wih n = 1.

Step 2. R.=0.9952. P=R R = 08313

Step 3. Since P 2 ¢ “oreject =1 and return to Step 2 wih o= 2.

Step 2. R, = 08004, P = R R-R. = 0.6054

Step 3. Since P < ¢ “Caceept V=2
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The calculations requtred for the generation of these “hree Poisson random variates are summarized as

tollows:

n R.. r Accept/Reject Result !
Lo (34357 04357 P < e " taceenty \ =)
0 04140 04126 P e 7 taccepty N o)
Y 0.8353 0.83:3 P et irgject :

| 00957 0.83:3 P >e ireject j

2 0004 0.66054 P <o taceept) N )

%

[t took five random numbers. R 1o generate three Poisson variates here (N = 0. N = 0. and A = 2). but in the
Jong run. to generate. say. 1000 Poisson variates with mean ¢= 0.2, 1t would require approximately 1000« + 1)
ar 1200 random numbers.

txample89
Buses armive at the bus stop at Peachtree and North Avenue according to a Poisson process with a mean of one

bus per IS munutes. Generate o random variate. N, which represents the number of arriving buses during
4 F-hour time slot. Now, A is Porsson distributed with a mean of four buses per hour. First compute ¢ 7= ¢ * =
0183, Using a sequence of 12 random numbers from Table A1 vields the following summarized results:

" R, I Accepi/Reject Resudt
I ~
ju 0.4357 0.4.57 Pze " reject
P 04146 01806 Pz v reject)
P2 0.8333 01508 Pze v (rejec)
P (0.0932 01702 > ¢ reject)
o4 0.800:4 0.1.02 Z e Yireject)
©o8 0.7045 (1.00SS Pz ireject)
Lo 0.1530 00546 P<etaceepy N=6 |

[tis immediately seen that a fareer value of o there o = 4 usualdly requires more random numbers: it 1000

Poisson variates were desired. approximately 1000+ 1) = 5000 random numbers would be required.
When ais large. say o= 150 the rejection technigue outlined here becomes quite expensive. but fortunately

anapproximate technigue based on the normal distribution works quite well. When the mean, o is large. then

N -

Jor

s approximately normally distribuied with mean zero and varance 11 this observation suggests an approsi-
mate techmque. Firste generate astandard normel variate 7 by Equation (3.2%) in Section 8.3.1. then gener-
Aate the desired Poisson variate. N by

N =l NoZ 05 (8.25)

where [-]is the round-up functon described in Section 8 1.7, 1 o+ VrZ = 0.5 < 0. then set ' = 0.1 The
57 used i the formula makes the round-up function become a “round to the nearest integer”™ function.
Fquation (825118 notan acceptance—rejection technigue, bute when used as an alternative to the acceptance--
rejection method. 1t provides a fairly efficient and accurate method for generating Poisson variates with a
Large mean.
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Table 8.7 Arrival Rate for NSPP Example

Imini Mean Time benveen Arrovals cmins Virival Rate 2any carrivals/imin
0 [ /18
i 60 2 712
) 7 17
180 s /A
240 Y /s ‘
306) 10 /10
300 > AN
420 20 120
80 0 120

8.2.2 Nonstationary Poisson Process

Another type of acceptance—rejection method (which is also called “thinning™r can be used to gencerate
mterartival times from a nonstationary Poisson process (NSPPywith arrval rate A0, 0 <0< 17 A NSPP s
an arrival process with an arrival rate that varies with time: see Section 5.5.2,

Consider. for instance. the arrival-rate function given in Table 8.7 that changes every hour. The idea behimd
thinning is to generate a stationary Poisson arrival process at the fostest rate (1S customer per minute in the
example). but “accept” or admit only @ portion of the arrivaes. thinning out just ecnough to get the desired tmw
varving rate. Next we give the generie algonthm. which sonerates 7 as the e of the ith arrival. Remembey
that, m a stationary Poisson arrival process. the times between arrivals are exponentially distributed.

Step 1. Let A% = max,, .. ;- A1) be the maximum ot the arrival rate tunction and setr = O and = 1

Step 2. Generate E from the exponential distribution with rate 47 and fet = 7+ Loothisas the arrval tme o

the stationary Poisson process).
Step 3. Generate random number R from the (7¢O D distribution. 18 R < Atz then Z=rand 7= 7+
Step 4. Go to Step 2.

The thinning algorithm can be inefficient if there are arge difierences between the typical and the man

imum arrival rate. However. thinning has the advantage that it works tor any integrable arrival rate function,
Not just a piccewise-constant function as in this example.

Example 8.10 ) : e
For the arrival-rate function m Table 8.7, generate the firss two arrival times,

Step L. A% =max,,., A= S r=0andi=1.

Step 2. For random number R = 021300 £ = =5 In0. 2130 = 13 13 and 1= G+ 1315 = 1313
Step 3. Generate R = 0.8830. Since R = 08830 7 AL 13 A% = (1055 = 1730 do not generate the arrival
Step 4. Go o Step 2.

Step 2. For random number 8 = 055200 £ = =5 In(0.553) = 296 and 7= 1313 + 206 = 16.09.

Step 3. Generate R = 0.0240. Since R = 0.0240 £ AC16.090/A7 = (1SS = 13 set 70 = 1= 10,09 ana

P+l =2

Step 4. Go 1o Siep 2.
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Step 2. For random number £ := 00001, £ = = S In(0.000 ) = 46.05 and 7 = 16.09 + 46.05 = 62.14.
Step 3. Generate R = O 1443 Since R = 01443 < A 02 /A" = 1120015 = 5/120set 7, =1 = 62,14 und
I IR

Step 4. Goto Step 2.

8.2.3 Gamma Distribution

Several acceptance-rejection technigues for gene-ating ga nma random variates have been developed. iSee

Bradey. Fox.and Schrage 119961 Fishman [1978]: and Law and Kelton [ 20001 One of the more efficient is by

Cheng {19772 the mean number of triads 1w between F 13 and 147 for any value of the shape parameter 3 2 1.
I the shape parameter s an integer, say fi= A one possibility is to use the convolution technigque in

Example 8120 because the Brlang distibution is a special case of the more general gamma distribution, On

the other hand the acceptance—rejection rechnigu e deseribed here would be w highly efficient method tor the

Fring distribution especiallv it =4 were laree The routine cenerates gamma random variates with scale

parameter @ and shape parwmicter 3 that is. with mean 178 and variance 1736 The steps are as follows:

Step L. Compute a = /2 - ' b= - Ind,

Step 2. Generate Roand R Ser V= Rocl=R o

Step 3. Compute X = L

Step da 10N = b= (fa= V- Ik ROy repect Xanc retusn o Step 2.

Step Ab. 10N < b+ (S D IntVy - Intk, ROy use Xoas the desired variate.

Phe generated variates from Step 4b will have mean and variance both equal to 11 it 1s desired to have
mean /6 and variance 17367 as in Section 54 then include Step S.

(Step 5. Replace N by X/ 36

The basic idea of all acceeptance-rejection mathods is again llustrated here, but the proof ot this exam-
ple is bevond the scope of this boek. In Step 30X = 10 = 3[R /(1R 1} is not gamma distributed. but rejec
ton of certain values of X m Step 4a enarantees that the accepted values e Step 4b do have the gamima

Jdistribution,

Example8.10 S .
Downtimes for a high-production candy -making machine have been found o be gammia distributed with
mean 2.2 minates and variance 2000 mimutes. Thas, /6= 2.2 wnd /667 = 210, which together imply that
=230 and 8= 04545

Step Lo =053 h =091,

Step 2. Generate Ry = OS32 R = 0021 Set V= 0.832/(1 = 0832+ 1952

Step 3. Compute X = 2 54952y = 337,

Step 4. V=537 5001 + 23033 + 1114952 — Inf(0.8 320,021 1 = 8,68, so reject X and return 1o Step 2
Step 2. Generate Ry = 0434 Ro= 0710, Set V= 0423401 -0.4340) = (.707.

Step 3. Compute X = 230 76707 = 200,

step 4 Since X = 200 2 091 + [ 23030 + 1] 010767 =n[0434)-0.716] = 2320 aceept X,

Step 5. Divide X by 0= 1045 0 get \ = 191
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This example took two trials (.e.. one rejection) to gererate an accepteble camma-distributed random
variate. but. on the average. to generate, say, 10CO gamma varates. the method will require between 1130
and 1470 trials. or equivalently, between 22660 and 2940 random numbers. The method is somewhat cum-
hersome for hand caleulations. but is casy to program o1 the computer and 1 one of the most efticient
camma generators known.

8.3 SPECIAL PROPERTIES

“Special properties™ are just as the name implies They ar2 variate-generation techniques that are based on
features of a particular family ot probability distributions, rather than being general-purpose techniques Tike
the inverse-transform or acceptance-rejection techniques.

8.3.1 Direct Transformation for the Normal and Lognormal Distributions

Many methods have been developed for generating normally distributed random vanates. The inverse-transtorm
technigue cannot eastly be applied. however, because the inverse cdf cannot be written in closed form. The
standard normal cdf is given by

1

(D(,\'::j vl —oo el \ <o
CNAm

This section describes an intuitively appeahing direct transtormation that produces an independent pair of
standard normal variates with mean zero and veriance 1. The method is due 1o Box and Muller [ 19581
Although not as efficient as many more modern techniques. it 15 casy to program in a scientific language.
such as FORTRAN, €. C4++ . Visual Basic. or Java. We then show now to transform a standard normal vari
ate into a normal variate with mean i and variance o-. Orce we aave a method (this or any other) for gen
erating X from a Ny, 6°) distribution. then we can generate a logrormal random variate ¥ with parameters
wand ¢ by using the direct transtormation ¥ = ¢}, (Recall that ¢ and ¢ are nor the mean and variance ol
the lognormal: see Equattons (5.58) and (5.59).)

Consider two standard normal random variables. 7, axd Z.. plotted as a point in the plane as shown in
Figure 8.7 and represented in polar coordinates as

Zy=HBcos 0 (8.26)
7. =RBsin A

[tis known that B” =27 + 7. has the chi-square distribution with 2 degrees of treedom. which is equivii-

lent to an exponential distribution with mean 2. Thus. the radius, B. can be generated by use of Equation (8.3

B=(=21InR:"" (8.27)

By the symmetry ot the normal distribution. it scems reasonable to supposce. and indeed it 1s the case. that
the angle is uniformly distributed between 0 and 2 radians. In additon. the radius, B. and the angle, 6, are
mutualty independent. Combining Equations (8.26) and (8.27) gives a direct method for generating two inde-
pendent standard normal vartates. 7, and 7. from twe independent random aumbers. R, and R

Z =(=2 nR “cosi2nR
. L (8.28)
Z = (=2 Ry sin2aR.
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Figure 8.7 Polar representation of a pair of standard normal variables.

To illustrate the generation scheme, consider Equation (8.28) with R, = 0.1758 and R, = 0.1489. Two
standard normal random variates are generated as follows:

Z, =[-21n(0.1758)]'"* cos(270.1489) = 1.11
Z, =[-21In(0.1758)]""" sin(270.1489) = 1.50
To obtain normal variates X; with mean y and variance o, we then apply the transformation
Xi=u+ oz (8.29)

to the standard normal variates. For example, to transform the two standard normal variates into normal variates
with mean y = 10 and variance o® = 4, we compute

X =10+2(1.1H=12.22
X, =10+2(1.50) =13.00

8.3.2 Convolution Method

The probability distribution of a sum of two or more independent random variables is called a convolution
of the distributions of the original variables. The convolution method thus refers to adding together two or
more random variables to obtain a new random variable with the desired distribution. This technique can be
applied to obtain Erlang variates and binomial variates. What is important is not the cdf of the desired ran-
dom variable, but rather its relation to other variates more easily generated.

Example 8.12: Erlang Distribution
As was discussed in Section 5.4, an Erlang random variable X with parameters (k, 6) can be shown to be the
sum of k independent exponential random variables, X;, i = 1, ..., k, each having mean 1/k6—that is,

x=ix

i=1
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The convolution approach is to generate X,. X.. ..., X*, then sum them to get X. In the case of the Erlang, cach
X. can be generated by Equation (8.3) with 1/A = 1/k6. Therefore, an Erlang variate can be gencrated by

A ol ]

X:Z—Elnk_,

=1
l A

= | TIR (8.30)
11 )

It is more efficient computationally to multiply all the random numbers first and then to compute only one
logarithm.

Example 8.13
Trucks arrive at a large warehouse in a completely random tashion that is modeled as a Poisson process with
arrival rate A = 10 trucks per hour. The guard at the entrance sends trucks alternately to the north and south

a model of the arrival process at the south docks alone. An interarrival time X between successive truck
arrivals at the south docks is equal to the sum of two interarrival times at the entrance and thus it is the sum
of two exponential random variables, each having mean 0.1 hour, or 6 minutes. Thus, X has the Erlang
distribution with K = 2 and mean 1/8 = 2/A = 0.2 hour. To generate the variate X, first obtain K = 2 random
numbers from Table A.1, say R, = 0.937 and R, = 0.217. Then, by Equation (8.30).

X =0.1n[0.937(0.217)]

=().159 hour =9.56 minutes

In general. Equation (8.30) implies that K uniform random number are needed for cach Erlang variate
generated. If K is large. it is more efficient to generate Erlang variates by other techniques, such as one of
the many acceptance—rejection techniques for the gamma distribution given in Section 8.2.3. or by Bratley.
Fox and Schrage |1996], Fishman [1978]. and Law and Kelton [2000].

8.3.3 More Special Properties

There are many relationships among probability distributions that can be exploited for random-variate
generation. The convolution method in the Section 8.3.2 is one example. Another particularly useful exam-
ple is the relationship between the beta distribution and the gamma distribution.

Suppose that X, has a gamma distribution with shape parameter 3, and scale parameter 6, = 1/8,. while
X, has a gamma distribution with shape parameter 8, and scale parameter 6, = 1/B.. and that these two
random variables are independent. Then

X

X +X.

has a beta distribution with parameters 3, and B, on the interval (0. 1). If, instead, we want ¥ to be defined
on the interval (a. b). then set

, \

1

Y=u+(b—u)| —
X + X, )

Thus. using the acceptance-rejection technique for gamma variates defined in the previous section. we can
generate beta variates, with two gamma variates required tor each beta.
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Although this method of beta generation is convenient, there are faster methods based on
acceptance-rejection ideas. See. for instance, Devroye [ 1986 or Dagpunar | 1988].

8.4 SUMMARY

The basic principles of random-variate generation via the inverse-transtorm technique, the acceptance-
rejection technique, and special properties have been introduced and illustrated by examples. Methods for
generating many of the important continuous and discrete distributions. plus all empirical distributions, have
been given. See Schmeiser [1980] for an excellent survey: for a state-of-the-art treatment. the reader is
referred to Devroye [1986] or Dagpunar [1988].
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EXERCISES

1. Develop a random-variate generator for X with pdf

A 1<y<l
f(\): 2 . SX>
0, otherwise

2. Develop a generation scheme for the triangular distribution with pdf

0. otherwise

Generate 10 values of the random variate, compute the sample mean, and compare it to the true mean
of the distribution.
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Develop the triangular random-variate generator with range (0, 12) and mode 5.

= W

Develop a generator for a triangular distribution with range (1, 10) and a mean of 4.

5. Given the following cdf for a continuous variable with range from -3 to 4. develop a generator for the
variable.

0 x<-3

LiX 0 3ce<o

2 6

F(x)="- | ,

—+ L. O<x<4

2 32
| L x>4

6. Given the cdf F(x) = x¥/16 on 0 < x < 2, develop a generator for this distribution.
7. Given the pdf f(x) = x*/9 on 0 < x < 3, develop a generator for this distribution.

8. The pdf of a random variable is

1

5

X 1
flx)y=]=, 3<x<9

8

0,

otherwise

Develop the random-variate generator.

9. The cdf of a discrete random variable X is given by

= x(x+D2x+1)
T oan+ D2+’

When n = 4, generate three values of X, using R; =0.83, R, = 0.24. and R; = 0.57.

10. Times to failure for an automated production process have been found to be randomly distributed with
a Weibull distribution with parameters = 2 and o = 10. Derive Equation (8.6), and then use it to
generate five values from this Weibull distribution, using five random numbers taken from Table A.1.

11. The details of time taken by a mechanic to repair a breakdown are

Repair Time Range (Hours) Frequency
-2 15
2-3 12
3-4 14
4-5 25
5-6 32
6-7 14

Develop a lookup table and generate five repair times using random numbers.
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12.

13.

14.

16.

17.

18.

19.

In an inventory system, the lead time is found to follow uniform distribution with mean 10 days and half
width 3 days. Generate five lead times.

For a preliminary version of a simulation model. the number of pallets. X, to be loaded onto a truck at a load-
ing dock was assumed to be uniformly distributed between 8 and 24. Devise a method for generating X.
assuming that the loads on successive trucks are independent. Use the technique of Example 8.5 for discrete
uniform distributions. Finally. generate loads for 10 successive trucks by using four-digit random numbers.

Develop a method for generating values from a negative binomial distribution with parameters p and &.
as described in Section 5.3. Generate 3 values when p = 0.8 and k = 2. [Hinz: Think about the definition
of the negative binomial as the number of Bernoulli trials until the kth success. |

The weekly demand., X. for a slow-moving item has been found to be approximated well by a geometric
distribution on the range {0, 1. 2. ...} with mean weekly demand of 2.5 items. Generate 10 values of X.
demand per week, using random numbers from Table A.l. (Hint: For a geometric distribution on the
range {¢. ¢ + I, ...} with parameter p. the mean is 1/p + ¢ — 1.)

In Exercise 15, suppose that the demand has been found to have a Poisson distribution with mean 2.5
items per week. Generate 10 values of X, demand per week. using random numbers from Table A.1.
Discuss the differences between the geometric and the Poisson distributions.

Service time of a bank teller is found to follow normal with = 5 minutes and o = | minute. Generate
five service times.

The time to attend a breakdown call is found to follow exponential with a mean of 2 hours. Generate
exponential random variates representing the time to attend.

A machine is taken out of production either if it fails or after 5 hours, whichever comes first. By running
similar machines until failure. it has been found that time to failure. X, has the Weibull distribution with
a=8.f=0.75,and v= 0 (refer to Sections 5.4 and 8.1.3). Thus. the time until the machine is taken out
of production can be represented as ¥ = min(X. 5). Develop a step-by-step procedure for generating Y.

In an art gallery, the arrival of visitors follow Poisson with a mean of 4 per hour. Generate the arrivals
for the next 1 hour.

Develop a technique for generating a binomial random variable. X. via the convolution technique. |Hint:
X can be represented as the number of successes in » independent Bernoulli trials, each success having
probability p. Thus. X =" X where P(X,= 1) =pand P(X,=0)= 1 — p.]

Develop an accepiance-rejection technique for generating a geometric random variable. X. with param-
eter pon the range {0. 1.2, ...}, (Hint: X can be thought of as the number of trials before the first success
oceurs in a sequence of independent Bernoulli trials.)

Write a computer program to generate exponential random variates for a given mean value. Generate
1000 values and verify the variates generated using chi-square test.

Develop a computer program to generate binomial random variates with p = probability of success.
n = number of trials, and x = random number between 0 and 1.

Write a computer program to generate 500 normal random variates ot given x and o values and prepare
a histogram.

Many spreadsheet, symbolic-calculation, and statistical-analysis programs have built-in routines for
generating random variates from standard distributions. Try to find out what variate-generation methods
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are used in one of these packages by looking at the documentation. Should you trust a variate generator
if the method is not documented?

27. Suppose that. somehow, we have available a source ot exponentially distributed random variates with
mean 1. Write an algorithm to generate random variates with a triangular distribution by transforming
the exponentially distributed random variates. [Hint: First transform to obtain uniformly distributed
random variates. |

28. A study is conducted on the arrival of customers in a bus stop during the post lunch period. The system
starts at 12.30 p.m. and the arrival rate per hour during different intervals of time are

Time Arrival Rate/Hour
12.30-1.30 p.M, 20
1.30-2.30 p.m. 35
2.30-3.30 p.M. 60
3.30—-4.30 p.m. 80

Generate arrivals from this NSPP.

29. Generate 10 values from a beta distribution on the interval [0, 1] with parameters 3, = 1.47 and 8, =2.16.
Next transform them to be on the interval [-10. 20].



Part IV

Analysis of Simulation Data
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Input Modeling

Input models provide the driving force for a simulation model. In the simulation of a queueing system.
typical input models are the distributions of time between arrivals and of service times. For an inventory-
system simulation, input models include the distributions of demand and of lead time. For the simulation of
a reliability system, the distribution of time to failure of a component is an example of an input model.

In the examples and exercises in Chapters 2 and 3, the appropriate distributions were specified for you.
[n real-world simulation applications, however, coming up with appropriate distributions for input data is a
major task from the standpoint of time and resource requirements. Regardless of the sophistication of the
analyst, faulty models of the inputs will lead to outputs whose interpretation could give rise to misleading
recommendations.

There are four steps in the development of a useful model of input data:

1.

Collect data from the real system of interest. This often requires a substantial time and resource com-
mitment. Unfortunately, in some situations it is not possible to collect data (for example. when time
is extremely limited, when the input process does not yet exist, or when laws or rules prohibit the
collection of data). When data are not available, expert opinion and knowledge of the process must
be used to make educated guesses.

. Identity a probability distribution to represent the input process. When data are available, this step

typically begins with the development of a frequency distribution. or histogram, of the data. Given
the frequency distribution and a structural knowledge of the process. a family of distributions is
chosen. Fortunately. as was described in Chapter 5. several well-known distributions often provide
good approximations in practice.

Choose parameters that determine a specific instance of the distribution family. When data are available.
these parameters may be estimated from the data.

269
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4. Evaluate the chosen distribution and the associated parameters for goodness of fit. Goodness of fit
may be evaluated informally. via graphical methods, or formally, via statistical tests. The chi-square
and the Kolmogorov-Smirnov tests are standard goodness-of-fit tests. If not satistied that the chosen
distribution is a good approximation of the data, then the analyst returns to the second step. chooses
a different family of distributions, and repeats the procedure. If several iterations of this procedure
fail to yield a fit between an assumed distributional form and the collected data. the empirical form
of the distribution may be used, as was described in Section 8.1.5.

Each of these steps is discussed in this chapter. Although software is now widely available to accomplish
Steps 2. 3. and 4—including such stand-alone programs as ExpertFit" and Stat:Fit* and such integrated
programs as Arena’s Input Processor and @Risk’s BestFit"—it is still important to understand what the soft-
ware does. so that it can be used appropriately. Unfortunately, software is not as readily available for input
modeling when there is a relationship between two or more variables of interest or when no data are available.
These two topics are discussed toward the end of the chapter.

9.1 DATA COLLECTION

Problems are found at the end of each chapter, as exercises for the reader. in textbooks about mathematics,
physics, chemistry, and other technical subjects. Years and years of working these problems could give the
reader the impression that data are readily available. Nothing could be further from the truth. Data collection
is one of the biggest tasks in solving a real problem. It is one of the most important and difficult problems
in simulation. And. even when data are available, they have rarely been recorded in a form that is directly
useful for simulation input modeling.

“GIGO.” or "garbage-in—garbage-out.” is a basic concept in computer science, and it applies equally in
the area of discrete-system simulation. Even when the model structure is valid. if the input data are inaccu-
rately collected, inappropriately analyzed. or not representative of the environment, the simulation output
data will be misleading and possibly damaging or costly when used for policy or decision making.

Example 9.1: The Laundromat
As budding simulation students. the first two authors had assignments to simulate the operation of an ongoing
system. One of these systems, which seemed to be a rather simple operation, was a self-service laundromat with
10 washing machines and six dryers.

However. the data-collection aspect of the problem rapidly became rather enormous. The interarrival-
time distribution was not homogeneous: it changed by time of day and by day of week. The laundromat
was open 7 days a week for 16 hours per day. or 112 hours per week. It would have been impossible to cover
the operation of the laundromat with the limited resources available (two students who were also taking four
other courses) and with a tight time constraint (the simulation was to be completed in a 4-week period).
Additionally, the distribution of time between arrivals during one week might not have been followed during
the next week. As a compromise, a sample of times was selected, and the interarrival-time distributions were
classified according to arrival rate (perhaps inappropriately) as “high,” “medium.” and “low.”

Service-time distributions also presented a difficult problem from many perspectives. The proportion of
customers demanding the various service combinations had to be observed and recorded. The simplest case
was the customer desiring one washer followed by one dryer. However, a customer might choose two washing
machines followed by one dryer, one dryer only, and so on. The customers used numbered machines, and it
was possible to follow the customers via that reference, rather than remembering them by personal charac-
teristics. Because of the dependence between washer demand and dryer demand for an individual customer,
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it would have been inappropriate to treat the service times for washers and dryers separately as independent
variables.

Some customers waited patiently for their clothes to complete the washing or drying cycle. and then they
removed their clothes promptly. Others lett the premises and returned after their clothes had finished their
cycle on the machine being used. In a very busy period. the manager would remove a customer’s clothes after
the cycle and set them aside in a basket. It was decided that service termination would be measured as that
point in time at which the machine was emptied of its contents.

Also. machines would break down from time to time. The length of the breakdown varied from a few
moments, when the manager repaired the machine, to several days (a breakdown on Friday night. requiring
a part not in the laundromat storeroom. would not be fixed until the following Monday). The short-term
repair times were recorded by the student team. The long-term repair completion times were estimated by
the manager. Breakdowns then became part of the simulation.

Many lessons can be learned from an actual experience at data collection. The first five exercises at the
end of this chapter suggest some situations in which the student can gain such experience.

The following suggestions might enhance and facilitate data collection. although they are not all
inclusive.

1. A useful expenditure of time is in planning. This could begin by a practice or preobserving session.
Try to collect data while preobserving. Devise forms for this purpose. It is very likely that these
forms will have to be modified several times before the actual data collection begins. Watch for
unusual circumstances, and consider how they will be handled. When possible. videotape the system
and extract the data later by viewing the tape. Planning is important, even if data will be collected
automatically (e.g., via computer data collection), to ensure that the appropriate data are available.
When data have already been collected by someone else, be sure to allow plenty of time for converting
the data into a usable format.

2. Try to analyze the data as they are being collected. Figure out whether the data being collected are
adequate to provide the distributions needed as input to the simulation. Find out whether any data
being collected are useless to the simulation. There is no need to collect superfluous data.

3. Try to combine homogeneous data sets. Check data for homogeneity in successive time periods
and during the same time period on successive days. For example, check for homogeneity of data

from 2:00 p.M. to 3:00 .M. and 3:00 P.M. to 4:00 pM., and check to see whether the data are homo-
geneous for 2:00 p.M. to 3:00 p.M. on Thursday and Friday. When checking for homogeneity. an initial
lest is to see whether the means of the distributions (the average interarrival times, for example) are
the same. The two-sample 1 test can be used for this purpose. A more thorough analysis would
require a test of the equivalence of the distributions, perhaps via a quantile-quantile plot (described
later).

4. Be aware of the possibility of data censoring, in which a quantity of interest is not observed in its
entirety. This problem most often occurs when the analyst is interested in the time required to
complete some process (for example, produce a part, treat a patient, or have a component fail), but
the process begins prior to, or finishes after the completion of,, the observation period. Censoring can
result in especially long process times being left out of the data sample.

5. To discover whether there is a relationship between two variables, build a scatter diagram.
Sometimes an eyeball scan of the scatter diagram will indicate whether there is a relationship
between two variables of interest. Section 9.7 describes models for statistically dependent input
data.

6. Consider the possibility that a sequence of observations that appear to be independent actually has
autocorrelation. Autocorrelation can exist in successive time periods or for successive customers.
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For example, the service time for the ith customer could be related to the service time for the (i + n)th
customer. A briet introduction to autocorrelation was provided in Section 7.4.2, and some input
models that account for autocorrelation are presented in Section 9.7.

7. Keep in mind the difference between input data and output or performance data, and be sure to
collect input data. Input data typically represent the uncertain quantities that are largely beyond the
control of the system and will not be altered by changes made to improve the system. Output data,
on the other hand. represent the performance of the system when subjected to the inputs, performance
that we might be trying to improve. In a queueing simulation, the customer arrival times are usually
inputs. whereas the customer delay is an output. Performance data are useful for model validation,
however—see Chapter 10.

Again, these are just a few suggestions. As a rule, data collection and analysis must be approached with
great care.

9.2 IDENTIFYING THE DISTRIBUTION WITH DATA

In this section, we discuss methods for selecting families of input distributions when data are available. The
specific distribution within a family is specified by estimating its parameters, as described in Section 9.3.
Section 9.6 takes up the case in which data are unavailable.

9.2.1 Histograms

A frequency distribution or histogram is useful in identifying the shape of a distribution. A histogram is
constructed as follows:

1. Divide the range of the data into intervals. (Intervals are usually of equal width; however, unequal
widths may be used if the heights of the frequencies are adjusted.)

. Label the horizontal axis to conform to the intervals selected.

Find the frequency of occurrences within each interval.

Label the vertical axis so that the total occurrences can be plotted for each interval.

Plot the frequencies on the vertical axis.

mos

The number of class intervals depends on the number of observations and on the amount of scatter or
dispersion in the data. Hines, Montgomery. Goldsman. and Borrow [2002] state that choosing the number
of class intervals approximately equal to the square root of the sample size often works well in practice.
If the intervals are too wide, the histogram will be coarse, or blocky. and its shape and other details will not
show well. If the intervals are too narrow, the histogram will be ragged and will not smooth the data.
Examples of ragged, coarse, and appropriate histograms of the same data are shown in Figure 9.1. Modern
data-analysis software often allows the interval sizes to be changed easily and interactively until a good
choice is found.

The histogram for continuous data corresponds to the probability density function of a theoretical dis-
tribution. If continuous. a line drawn through the center point of each class interval frequency should result
in a shane like that of a pdf.

Histograms for discrete data, where there are a large number of data points, should have a cell for each
value in the range of the data. However. if there are few data points. it could be necessary to combine adjacent
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Figure 9.1 Ragged, coarse, and appropriate histograms: {a) original data—too ragged; (b) combining
adjacent cells—too coarse; (c) combining adjacent cells—appropriate.

cells to eliminate the ragged appearance of the histogram. If the histogram is associated with discrete data,
it should look like a probability mass function.

Example 9.2: Discrete Data
The number of vehicles arriving at the northwest corner of an intersection in a 5-minute period between

7:00 a.M. and 7:05 A.M. was monitored for five workdays over a 20-week period. Table 9.1 shows the resulting
data. The first entry in the table indicates that there were 12 5-minute periods during which zero vehicles
arrived, 10 periods during which one vehicle arrived, and so on.

The number of automobiles is a discrete variable, and there are ample data. so the histogram may have
a cell for each possible value in the range of the data. The resulting histogram is shown in Figure 9.2.
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Table 9.1 Number of Arrivals in a 5-Minute Period

Arrivals Arrivals
per Period Frequency per Period Frequency
0 12 6 7
1 10 7 5
2 19 8 5
3 17 9 3
4 10 10 3
5 8 11 1
20 - _
18
16
i 14—
g
2 121
o
8 I
6 -
4 f—
T .

0O 1 2 3 4 5 6 7 8 9 10 11 X
Number of arrivals per period

Figure 9.2 Histogram of number of arrivals per period.

Example 9.3: Continuous Data
Life tests were performed on a random sample of electronic components at 1.5 times the nominal voltage,
and their lifetime (or time to failure), in days, was recorded:

79.919 3.081 0.062 1.961 5.845
3.027 6.505 0.021 0.013 0.123
6.769 59.899 1.192 34.760 5.009

18.387 0.141 43.565 24.420 0.433

144.695 2.663 17.967 0.091 9.003
0.941 0.878 3.371 2.157 7.579
0.624 5.380 3.148 7.078 23.960
0.590 1.928 0.300 0.002 0.543
7.004 31.764 1.005 [.147 0.219
3.217 14.382 1.008 2.336 4.562
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Table 9.2 Electronic Component
Data

Component Life
(Days) Frequency

()S_rj<3 2
3ij<6 1
6S.x‘j<9

9<x <12 1
12<x.< 15 1
155x/<18 2
I8ij<21 0
21 <x. <24 1
24 <y <27 |
27<x, <30 0
3()§,x'j<33 1
33S.x;l<36 1

42 < X, < 45 l
57< X < 60 1

78S.rj<81 1

144 < x < 147 1

Lifetime, usually considered a continuous variable, is recorded here to three-decimal-place accuracy. The
histogram is prepared by placing the data in class intervals. The range of the data is rather large, from 0.002
day to 144.695 days. However, most of the values (30 of 50) are in the zero-to-5-day range. Using intervals
of width three results in Table 9.2. The data of Table 9.2 are then used to prepare the histogram shown
in Figure 9.3.

9.2.2 Selecting the Family of Distributions

In Chapter 5. some distributions that arise often in simulation were described. Additionally. the shapes of
these distributions were displayed. The purpose of preparing a histogram is to infer a known pdt or pmf.
A family of distributions is selected on the basis of what might arise in the context being investigated along
with the shape of the histogram. Thus, if interarrival-time data have been collected, and the histogram has a
shape similar to the pdf in Figure 5.9, the assumption of an exponential distribution would be warranted.
Similarly, if measurements of the weights of pallets of freight are being made. and the histogram appears
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Figure 9.3 Histogram of component life.

symmetric about the mean with a shape like that shown in Figure 5.11, the assumption of a normal distribution
would be warranted.

The exponential, normal. and Poisson distributions are frequently encountered and are not difficult to
analyze from a computational standpoint. Although more difficuit to analyze. the beta, gamma, and Weibull
distributions provide a wide array of shapes and should not be overlooked during modeling of an underlying
probabilistic process. Perhaps an exponential distribution was assumed. but it was found not to fit the data.
The next step would be to examine where the lack of fit occurred. If the lack of fit was in one of the tails of
the distribution, perhaps a gamma or Weibull distribution would fit the data more adequately.

There are literally hundreds of probability distributions that have been created: many were created with
some specific physical process in mind. One aid to selecting distributions is to use the physical basis of the
distributions as a guide. Here are some examples:

Binomial: Models the number of successes in n trials, when the trials are independent with common
success probability, p: for example, the number of defective computer chips found in a lot of n chips.

Negative Binomial (includes the geometric distribution): Models the number of trials required to
achieve k successes: for example. the number of computer chips that we must inspect to find 4 detec-
tive chips.

Poisson: Models the number of independent events that occur in a fixed amount of time or space; for
example. the number of customers that arrive 1o a store during | hour, or the number of defects found
in 30 square meters of sheet metal.

Normal: Models the distribution of a process that can be thought of as the sum of a number of com-
ponent processes: for example. a time to assemble a product that is the sum of the times required for
cach assembly operation. Notice that the normal distribution admits negative values, which could be
impossible for process times.
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Lognormal: Models the distribution of a process that can be thought of as the product of (meaning to
multiply together) a number of component processes—for example. the rate on an investment, when
interest is compounded. is the product of the returns for a number of periods.

Exponential: Models the time between independent events, or a process time that is memoryless
(knowing how much time has passed gives no information about how much additional time will pass
before the process is complete)—for example, the times between the arrivals from a large population
of potential customers who act independently of each other. The exponential is a highly variable
distribution: it is sometimes overused, because it often Icads to mathematically tractable models.
Recall that. if the time between events is exponentially distributed. then the number of events in a
fixed period of time is Poisson.

Gamma: Anextremely flexible distribution used to model nonnegative random variables. The gamma
can be shifted away from 0 by adding a constant.

Beta:  An extremely flexible distribution used to model bounded (fixed upper and lower limits) random
variables. The beta can be shifted away from 0 by adding a constant and can be given a range larger
than [0, 1] by multiplying by a constant.

Erlang: Models processes that can be viewed as the sum of several exponentially distributed
processes—for example, a computer network fails when a computer and two backup computers fail,
and each has a time to failure that is exponentially distributed. The Erlang is a special case of the
gamma.

Weibull:  Models the time to failure for components-—for example, the time to failure for a disk drive.
The exponential is a special case of the Weibull.

Discrete or Continuous Uniform: Models complete uncertainty: All outcomes are cqually likely.
This distribution often is used inappropriately. when there are no data.

Triangular:  Models a process for which only the minimum. most likely. and maximum values of the
distribution are known; for example. the minimum. most likely, and maximum time required to test
a product. This model is often a marked improvement over a uniform distribution.

Empirical: Resamples from the actual data collected; often used when no theoretical distribution
seems appropriate.

Do not ignore physical characteristics of the process when selecting distributions. Is the process naturally
discrete or continuous valued? Is it bounded, or is there no natural bound? This knowledge. which does not
depend on data, can help narrow the family of distributions from which to choose. And keep in mind that there
is no “true” distribution for any stochastic input process. An input model is an approximation of reality. so the
goal is to obtain an approximation that yields usetul results from the simulation experiment.

The reader is encouraged to complete Exercises 6 through 11 to learn more about the shapes of the
distributions mentioned in this section. Examining the variations in shape as the parameters change is very
mstructive.

9.2.3 Quantile-Quantile Plots

The construction of histograms, as discussed in Section 9.2.1, and the recognition of a distributional shape,
as discussed in Section 9.2.2, are necessary ingredients for selecting a family of distributions to represent a
sample of data. However, a histogram is not as useful for evaluating the fir of the chosen distribution. When
there is a small number of data points, say 30 or fewer, a histogram can be rather ragged. Further. our
perception of the fit depends on the widths of the histogram intervals. But, even if the intervals are chosen
well, grouping data into cells makes it difficult to compare a histogram to a continuous probability density
function. A quantile—quantile (g — ¢) plot is a useful tool for evaluating distribution fit, one that does not
suffer from these problems.
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If X is a random variable with cdf F, then the ¢g-quantile of X is that value ysuch that F(y) = P(X < }) = 4.
for 0 < ¢ < 1. When F has an inverse, we write ¥y = FY(g).

Now let {x.i=1,2,....n} bea sample of data from X. Order the observations from the smallest to the
largest, and denote these as {y,j =1, 2,...,n}, where y <y, <-.- <y Let denote the ranking or order
number. Therefore, j = 1 for the smallest and j = n for the largest. The g — ¢ plot is based on the fact that v,
is an estimate of the (j — 1/2)/n quantile of X. In other words,

!
v, is approximately )
n

Now suppose that we have chosen a distribution with cdf F as a possible representation of the distribu-
tion of X. If F is a member of an appropriate family of distributions, then a plot of y, versus F'(( - 1/2)/n)
will be approximately a straight line. If F is from an appropriate family of distributions and also has appro-
priate parameter values, then the line will have slope 1. On the other hand, if the assumed distribution is inap-
propriate. the points will deviate from a straight line, usually in a systematic manner. The decision about
whether to reject some hypothesized model is subjective.

Example 9.4: Normal Q — Q Plot
A robot is used to install the doors on automobiles along an assembly line. It was thought that the installa-
tion times followed a normal distribution. The robot is capable of measuring installation times accurately.
A sample of 20 installation times was automatically taken by the robot, with the following results, where the
values are in seconds:

99.79 99.56 100.17 100.33
100.26 100.41 99.98 99.83
100.23 100.27 100.02 100.47

99.55 99.62 99.65 99.82
99.96 99.90 100.06 99.85

The sample mean is 99.99 seconds, and the sample variance is (0.2832)” seconds’. These values can serve
as the parameter estimates for the mean and variance of the normal distribution. The observations are now
ordered from smallest to largest as follows:

i Value j Value j Value J Value
1 99.55 6 99.82 11 99.98 16 100.26
2 99.56 7 99.83 12 100.02 17 100.27
3 99.62 8 99.85 13 100.06 18 100.33
4 99.65 9 99.90 14 100.17 19 100.41
S 99.79 10 99.96 15 100.23 20 100.47

The ordered observations are then plotted versus F~'((j — 1/2)/20), for j=1, 2, ..., 20, where F is the cdf of
the normal distribution with mean 99.99 and variance (0.2832)?, to obtain a ¢ ~ ¢ plot. The plotted values
are shown in Figure 9.4, along with a histogram of the data that has the density function of the normal dis-
tribution superimposed. Notice that it is difficult to tell whether the data are well represented by a normal
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Figure 9.4 Histogram and ¢ - ¢ plot of the installation times.

distribution from looking at the histogram, but the general perception of a straight line is quite clear in the
¢ — ¢ plot and supports the hypothesis of a normal distribution.
In the evaluation of the linearity of a ¢ — ¢ plot, the following should be considered:

1. The observed values will never fall exactly on a straight line.

2. The ordered values are not independent; they have been ranked. Hence, if one point is above a
straight line, it is likely that the next point will also lie above the line. And it is unlikely that the points
will be scattered about the line.

3. The variances of the extremes (largest and smallest values) are much higher than the variances in the
middle of the plot. Greater discrepancies can be accepted at the extremes. The linearity of the points
in the middle of the plot is more important than the linearity at the extremes.

Modern data-analysis software often includes tools for generating g — ¢ plots, especially for the normal
distribution. The ¢ — ¢ plot can also be used to compare two samples of data to see whether they can be
represented by the same distribution (that is, that they are homogeneous). If x,, X, ..., x, are a sample of the
random variable X, and s 3y +oos T, are a sample of the random variable Z, then plotting the ordered values
of X versus the ordered values of Z will reveal approximately a straight line if both samples are well represented
by the same distribution (Chambers, Cleveland, and Tukey [1983]).
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9.3 PARAMETER ESTIMATION

After a family of distributions has been selected, the next step is to estimate the parameters of the distribution.
Estimators for many useful distributions are described in this section. In addition, many software packages—
some of them integrated into simulation languages—are now available to compute these estimates.

9.3.1 Preliminary Statistics: Sample Mean and Sample Variance

In a number of instances, the sample mean, or the sample mean and sample variance, are used to estimate
the parameters of a hypothesized distribution; see Example 9.4. In the following paragraphs, three sets of
equations are given for computing the sample mean and sample variance. Equations (9.1) and (9.2) can be
used when discrete or continuous raw data are available. Equations (9.3) and (9.4) are used when the data
are discrete and have been grouped in a frequency distribution. Equations (9.5) and (9.6) are used when the
data are discrete or continuous and have been placed in class intervals. Equations (9.5) and (9.6) are approxi-
mations and should be used only when the raw data are unavailable.

If the observations in a sample of size n are X, X,, ... X, the sample mean ()_() is defined by
3 ”7 X[
X === 9.1
n
and the sample variance, S, is defined by
! Xf -nX?
§? = = (9.2)
n-1

If the data are discrete and have been grouped in a frequency distribution, Equations (9.1) and (9.2) can
be modified to provide for much greater computational efficiency. The sample mean can be computed as

k .
v zjzy-f/xl /
Y= - 9.3)
h

and the sample variance as

k , =
£X5 ~nX®
S = _ZL‘_/_____ (9.4)

n—1

where & is the number of distinct values of X and f; is the observed frequency of the value X, of X.

Example 9.5: Grouped Data
The data in Table 9.1 can be analyzed to obtain n = 100, f, = 12, X, = 0,f,= 10, X,=1, ..., z;ijJ =364,
and zkﬂ: £,X, =2080. From Equation (9.3),

X:3—6i=3.64
100

and, from Equation (9.4),

g _ 2080 100(3.64)°
] 99

=7.63
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The sample standard deviation, S. is just the square root of the sample variance. In this case, § = \/7.63 = 2.76.
Equations (9.1) and (9.2) would have yielded exactly the same results for X and S2.

Itis preferable to use the raw data, if possible, when the values are continuous. However, data some-
times are received after having been placed in class intervals. Then it is no longer possible to obtain the exact
sample mean and variance. In such cases, the sample mean and sample variance are approximated from the
tollowing equations:

_ z |fr'"/
=" (9.5)
n

and

T o
2 fm = —nX"
Sz = j=iv

n—1

(9.6)

where j; is the observed frequency in the jth class interval, m is the midpoint of the jth interval, and c is the
number of class intervals.

Example 9.6: Continuous Data in Class Intervals _ ,
Assume that the raw data on component life shown in Example 9.3 either was discarded or was lost.
However, the data shown in Table 9.2 are still available. To approximate values for X and S2, Equations (9.5)

and (9.6) are used. The following values are created: i =23.m =15,f,=10.m,=45, ., Zj:f]ml =614

and ZTQI flmlz =37,226.5. With n = 50. X is approximated from Equation (9.5) as

and

S=24614

Applying Equations (9.1) and (9.2) to the original data in Example 9.3 results in X = 11.894 and S = 24.953.
Thus, when the raw data are either discarded or lost, inaccuracies could result.

9.3.2 Suggested Estimators

Numerical estimates of the distribution parameters are needed to reduce the family of distributions to a specific
distribution and to test the resulting hypothesis. Table 9.3 contains suggested estimators for distribu-
tions often used in simulation, all of which were described in Chapter 5. Except for an adjustment to remove
bias in the estimate of ¢ for the normal distribution. these estimators are the maximum-likelihood estima-
tors based on the raw data. (If the data are in class intervals, these estimators must be modified.) The reader
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Table 9.3 Suggested Estimators for Distributions Often Used in Simulation

Distribution Parameter(s) Suggested Estimator(s)
Poisson «a a=X
IS
Exponential A==
X
Gamma B.6 ﬁ (see Table A.9)
-]
9 ==
X
Normal u.o =X
&’ = §? (unbiased)
Lognormal y. o’ [=X (after taking In of the data)
& = S? (after taking In of the data)
Weibull o B B, = X
with v=0 §
s .f(j;l— )
ﬁ, :ﬂ,»\ G :
B,
See Equations (9.12) and (9.15)
for f(8) and f"(B)
[terate until convergence
1 B
ns
Beta B,. B, B+ (B, - B,)=1n(G,)

W) +WB, - B, =InG,)

where W is the digamma function,

N

G, :(H: ‘Xi) and
G =(IT0-x)) "

is referred to Fishman [1973] and Law and Kelton {2000] for parameter estimates for the uniform, binomial.
and negative binomial distributions. The triangular distribution is usually employed when no data are avail-
able, with the parameters obtained from educated guesses for the minimum, most likely, and maximum
possible values; the uniform distribution may also be used in this way if only minimum and maximum values

are available.
Examples of the use of the estimators are given in the following paragraphs. The reader should keep in

mind that a parameter is an unknown constant, but the estimator is a statistic (or random variable), because
it depends on the sample values. To distinguish the two clearly here, if, say. a parameter is denoted by «. the

estimator will be denoted by &.
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Example 9.7: Poisson Distribution
Assume that the arrival data in Table 9.1 require analysis. By comparison with Figure 5.7. an examination
of Figure 9.2 suggests a Poisson distributional assumption with unknown parameter . From Table 9.3, the
estimator of ais X, which was found in Example 9.5. Thus. & = 3.64. Recall that the true mean and vari-
ance are equal for the Poisson distribution. In Example 9.5, the sample variance was estimated as §? = 7.63.
However, it should never be expected that the sample mean and the sample variance will be precisely equal,
because each is a random variable.

Example 9.8: Lognormal Distribution
The rates of return on 10 investments in a portfolio are 18.8, 27.9, 21.0, 6.1, 37.4. 5.0, 22.9, 1.0, 3.1 and 8.3
percent. To estimate the parameters of a lognormal model of these data. we first take the natural log of the
data and obtain 2.9. 3.3,3.0. 1.8,3.6, 1.6, 3.1,0, I.1, and 2.1. Then we set 1= X =23 and 6 = S* =1.3.

Example 9.9: Normal Distribution
The parameters of the normal distribution, u and ¢, are estimated by X and S, as shown in Table 9.3.
The g — g plot in Example 9.4 leads to a distributional assumption that the installation times are normal.
From Equations (9.1) and (9.2), the data in Example 9.4 yield = X =999865 and 6=5" = (0.2832)
second”.

Example 9.10: Gamma Distribution
The estimator B for the gamma distribution is chosen by the use of Table A.9, from Choi and Wette [1969].
Table A.9 requires the computation of the quantity 1/M, where

. 1 n
M=InX-=3InX, (9.7)
n
Also, it can be seen in Table 9.3 that  is given by

6= (9.8)

|| —

In Chapter 5. it was stated that lead time is often gamma distributed. Suppose that the lead times (in days)
associated with 20 orders have been accurately measured as follows:

Lead Time Lead Time

Order (Days) Order {Days)
1 70.292 |1 30.215
2 10.107 2 17.137
3 48.386 13 44.024
4 20.480 14 10.552
5 13.053 15 37.298
6 25.292 16 16.314
7 14713 17 28.073
8 39.166 8 39.019
9 17.421 19 32.330
10 13.905 20 36.547
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To estimate B and 8. it is first necessary to compute M from Equation (9.7). Here, X is found. from
Equation (9.1), to be

. 504.32 _—
20
Then,
In X =3.34
Next
20
Y InX, =6399
=1
Then,
3.
M= 3.34-57‘—92 =0.14
20
and

I'M =114
By interpolation in Table A9, B =3728. Finally, Equatior: (9.8) results in

L =0.035
22

~
LO Lo

6

I

Example 9.11: Exponential Distribution _
Assuming that the data in Example 9.3 come from an exponential distribution. the parameter estimate, A,
can be determined. In Table 9.3, A is obtained from X as follows:

2 |
A=—==——-=0.084 per da
11 894 P Y

< —

Example 9.12:  Weibull Distribution
Suppose that a random sample of size n, X, X,. ..., X, . has been taken and that the observations are assumed
to come from a Weibull distribution. The likelihood function derived by using the pdf given by Equation

(5.47) can be shown to be
ﬁ” n " X /j
Lia. By= _T[foﬁ "}cxp{—Z(—’) ] (9.9)
i=1

o ~\ «o

The maximum-likelihood estimates are those values of & and B that maximize L(c, f3) or. equivalently,
maximize InL(a. B). denoted by /(e B). The maximum value of /(o B) is obtained by taking the partial
derivatives dl(a. B)/docand dl( . B)/9B. setting each to zero. and solving the resulting equations, which after
substitution become

f(B)=0 (9.10)
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and
| 1
a=[‘2x,ﬂ] .11
ns
where

" ny’ X’Inx
f(ﬁ) — !BI + Z ln X: __;’ilﬁ_,,a_l (9 12)
=

Z 1”~| X'ﬂ

~ The maximum-likelihood estimates. & and B, are the solutions of Equations (9.10) and (9.11). First,
B is found via the iterative procedure explained shortly. Then ¢ is found from Equation (9.11), with = 5.

Equation (9.10) is nonlinear, so it is necessary to use a numerical-analysis technique to solve it. In Table 9.3,
an iterative method for computing B is given as

R _ N _ﬂﬁ;q)
B =8 B

(9.13)

i i-1

Equation (9.13) employs Newton's method in reaching B, where /5/ is the jth iteration. beginning with an initial
estimate for /5“. given in Table 9.3, as follows:

9.14)

If the initial estimate, B, is sufficiently close to the solution B, then /5, approaches B as j — 0. In Newton's
method, B is approached through increments of size f( B _)/f(B, ;). Equation (9.12) is used to compute

_f([}/ ;) and Equation (9.15) is used to compute. f'([}/,,) as follows:

nY " XPn X ) ”( ’ X,"InX,)—
F(By=—— Z"" % + Z"' (9.15)

D W S (Zx)

Equation (9.15) can be derived from Equation (9.12) by differentiating f(8) with respect to 5. The iterative
<0.001,

Consider the data given in Example 9.3. These data concern the failure of electronic components and looks
to come from an exponential distribution. In Example 9.11. the parameter 1 was estimated on the hypothesis
that the data were from an exponential distribution. If the hypothesis that the data came from an exponential
distribution is rejected, an alternative hypothesis is that the data come from a Weibull distribution. The Weibull
distribution is suspected because the data pertain to electronic component failures. which occur suddenly.

Equation (9.14) is used to compute [3”. For the data in Example 9.3.n =50, X = 11.894, X = 141 .467.

and Zw\ X’ =37.575.850: so $? is found by Equation (9.2) to be

process continues until f’(ﬁ" ) = (), for example, until ’f(ﬂ/)

. 37.578.850—-50(141.467)
19

A =622.650
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and S = 24.953. Thus,

~  11.894
P20

=0.477

To compute BI by using Equation (9.13) requires the calculation (>t'_f'(B{J) andf’([;“) from Equations (9.12)
and (9.15). The following additional values are needed: Y X" =115.125. 3" In X, =38.294.
3" xn X, =292.629, and Y, X/ (In X, = 1057.781. Thus,

50 50(292.629)

—— +38.294 -

— =16.024
).477 115.125

f(ﬁ()) :i

and

- —50  S0(1057.781) 50(292.629)°
f(By)= - - ( )2 ) 356110
0.477)° 115.125 (115.125)°

Then, by Equation (9.13),

B, =0477- 10029 _ 5 5s
-356.110

After four iterations, |f([i)| < 0.001, at which point [}ﬁ ﬁ4 =0.525 is the approximate solution to
Equation (9.10). Table 9.4 contains the values needed to complete each iteration.
Now, & can be computed from Equation (9.11) with f=8 = 0.525, as follows:

1/0.525

.| 130.608
a=|——— =6.227
50

If B, is sufficiently close to B. the procedure converges quickly, usually in four to five iterations.
However. if the procedure appears to be diverging. try other initial guesses for ﬁ()—for example, one-half the
initial estimate or twice the initial estimate.

The difficult task of estimating parameters for the Weibull distribution by hand emphasizes the value of
having software support for input modeling.

Table 9.4 lterative Estimation of Parameters of the Weibull Distribution

S0 SO

. 50 .
j B, Y x! S x'nx, Y xlinX) f(B) 1B B,..
=1 i-1 il

0 0.477 115.125 292.629 1057.781 16.024 —-356.110 0.522
1 0.522 129.489 344713 1254111 1.008 -313.540 0.525
2 0.525 130.603 348.769 1269.547 0.004 —310.853 0.525
3 0.525 130.608 348.786 1269.614 0.000 -310.841 0.525
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betaMLE := proc(X, n)

local Gl1, G2, betal, beta2, egns, solns;

Gl := product (X[(i], i=1..n)"(1/n);

G2 := product (1-X[i],i=1..n)"(1/n);

egns := {Psi(betal) - Psi(betal + keta2) = 1n(Gl),
Psi(beta2) - Psi(betal + beta2) = 1In(G2)};

solns := fsolveleqns, {betal=0..infinity, beta2=0..infinity});

RETURN (solns) ;

end;

Figure 9.5 Maple procedure to compute the maximum likelihood estimates for the beta distribution
parameters.

Example 9.13: Beta Distribution
The percentage of customers each month who bring in store coupons must be between 0 and 100 percent.
Observations at a store for eight months gave the values 25%, 74%, 20%. 32%, 81%, 47%, 31%, and 8%.
To fit a beta distribution to these data, we first need to rescale it to the interval (0, 1) by dividing all the values
by 100. to get 0.25. 0.74. 0.20, 0.32. 0.81. 0.47, 0.31, 0.08.

The maximum-likelihood estimators of the parameters f3, 3, solve the system of equations shown in
Table 9.3. Such equations can be solved by modern symbolic/numerical calculation programs, such as
Maple: a Maple procedure for the beta parameters is shown in Figure 9.5. In this case, the solutions are
B, =147and B, =2.16.

9.4 GOODNESS-OF-FIT TESTS

Hypothesis testing was discussed in Section 7.4 with respect to testing random numbers. In Section 7.4.1,
the Kolmogorov—Smirnov test and the chi-square test were introduced. These two tests are applied in this
section to hypotheses about distributional forms of input data.

Goodness-of-fit tests provide helpful guidance for evaluating the suitability of a potential input model:
however, there is no single correct distribution in a real application, so you should not be a slave to the verdict
of such a test. It is especially important to understand the effect of sample size. If very little data are available,
then a goodness-of-fit test is unlikely to reject any candidate distribution; but if a lot of data are available, then
i goodness-of-fit test will likely reject all candidate distributions. Therefore, failing to reject a candidate distri-
bution should be taken as one piece of evidence in favor of that choice, and rejecting an input model as only
one piece of evidence against the choice.

9.4.1 Chi-Square Test

One procedure for testing the hypothesis that a random sample of size n of the random variable X follows
a specific distributional form is the chi-square goodness-of-fit test. This test formalizes the intuitive idea of
comparing the histogram of the data to the shape of the candidate density or mass function. The test is valid
tor large sample sizes and for both discrete and continuous distributional assumptions when parameters are
estimated by maximum likelihood. The test procedure begins by arranging the n observations into a set of
A class intervals or cells. The test statistic is given by

., (O -EY
X = Z**;— (9.16)

1=1 /
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where O, is the observed frequency in the ith class interval and E| is the expected frequency in that class
interval. The expected frequency for each class interval is computed as E, = np,. where p, is the theoretical.
hypothesized probability associated with the ith class interval.

It can be shown that y; approximately follows the chi-square distribution with k — s — I degrees of free-
dom, where s represents the number of parameters of the hypothesized distribution estimated by the sample
statistics. The hypotheses are the following:

H: The random variable. X, conforms to the distributional assumption with the parameter(s) given by
the parameter estimate(s).
H,: The random variable X does not conform.

The critical value x;_,ﬂfl is found in Table A.6. The null hypothesis, H,,. is rejected if )(f) > Z,‘;ik_‘\‘,.

When applying the test, if expected frequencies are too small. y; will reflect not only the departure of
the observed from the expected frequency, but also the smallness of the expected frequency as well.
Although there is no general agreement regarding the minimum size of £, values of 3, 4, and 5 have been
widely used. In Section 7.4.1, when the chi-square test was discussed, the minimum expected frequency five
was suggested. If an E, value is too small, it can be combined with expected frequencies in adjacent class
intervals. The corresponding O, values should also be combined. and & should be reduced by one for each
cell that is combined.

If the distribution being tested is discrete, each value of the random variable should be a class interval,
unless it is necessary to combine adjacent class intervals to meet the minimum-expected-cell-frequency
requirement. For the discrete case, if combining adjacent cells is not required.

p,=plx)=PX=1x)

Otherwise, p, is found by summing the probabilities of appropriate adjacent cells.

If the distribution being tested is continuous, the class intervals are given by |a, |, a,), where a,_| and ¢,
are the endpoints of the ith class interval. For the continuous case with assumed pdf flx), or assumed cdf
F(x), p, can be computed as

p. = J"‘ f)dx=F(a))-Fia, )

For the discrete case, the number of class intervals is determined by the number of cells resulting after
combining adjacent cells as necessary. However, for the continuous case, the number of class intervals must
be specified. Although there are no general rules to be followed, the recommendations in Table 9.5 are made
to aid in determining the number of class intervals for continuous data.

Table 9.5 Recommendations for Number of Class
Intervals for Continuous Data

Sample Size. Number of Class Intervals.
n k
20 Do not use the chi-square test
50 Sto 10
100 10 to 20
>100 Jn to nis
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Example 9.14: Chi-Square Test Applied to Poisson Assumption
In Example 9.7. the vehicle-arrival data presented in Example 9.2 were analyzed. The histogram of the data,
shown in Figure 9.2, appeared to follow a Poisson distribution: hence the parameter. & = 3.64, was found.
Thus. the following hypotheses are formed:

H,: the random variable is Poisson distributed.
H: the random variable is not Poisson distributed.

The pmt for the Poisson distribution was given in Equation (5.19):

e o

- b)
ply) = o Cx=0,1,2,.. (9.17)

0, otherwise

For o= 3.64. the probabilities associated with various values of x are obtained from Equation (9.17):

pi0) =0.026 pe6) = 0.085
pth =0.096 p(7) = 0.044
pi2)y=0.174 p(8) = 0.020
pi3)=0.211 p(9) = 0.008
pi) =0.192 ptl) =0.003
PiSY=0.140  p=11)=0.00!

From this information, Table 9.6 is constructed. The value of E| is given by np, = 100(0.026) =2.6. In a
similar manner, the remaining £, values are computed. Since £, = 2.6 <5, E, and E, are combined. In that
case, O, and O, are also combined. and 4 is reduced by onc. The last five class intervals are also combined,
for the same reason, and & is further reduced by four.

The calculated y; is 27.68. The degrees of freedom for the tabulated value of y?isk—s—1=7—1 -
I'=5. Here, s = 1, since one parameter, @ was estimated from the data. At the 0.05 level of significance, the
critical value y; . is 11.1. Thus, H, would be rejected at level of significance 0.05. The analyst, therefore,
might want to search for a better-fitting model or use the empirical distribution of the data.

Table 9.6 Chisquare Goodness-of-Fit Test for Example 9.14

Observed Frequeney, Expected Frequeney, (O£
X, 0, F, E;
0 120 2.6
| o2 o | 122 } 7.87
2 19 174 .15
3 17 211 (.80
4 10 192 4.41
S 8 140 2.57
6 7 8.5 0.26
7 5 44
8 5 20
9 317 08 7.6 11.62
10 3 03
=11 ! 01
T00 1000 37.68
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9.4.2 Chi-Square Test with Equal Probabilities

If a continuous distributional assumption is being tested, class intervals that are equal in probability rather
than equal in width of interval should be used. This has been recommended by a number of authors [Mann and
Wald. 1942; Gumbel. 1943: Law and Kelton. 2000; Stuart, Ord, and Arnold. 1998]. It should be noted that
the procedure is not applicable to data collected in class intervals, where the raw data have been discarded
or lost.

Unfortunately, there is as yet no method for figuring out the probability associated with each interval that
maximizes the power for a test of a given size. (The power of a test is defined as the probability of rejecting
a false hypothesis.) However, if using equal probabilities, then pi = 1/k. We recommend

E=np 25
so substituting for p, yields
%>5
k
and solving for k yields
k<t (9.18)
5

Equation (9.18) was used in coming up with the recommendations for maximum number of class intervals
in Table 9.5.

If the assumed distribution is normal. exponential, or Weibull, the method described in this section is
straightforward. Example 9.15 indicates how the procedure is accomplished for the exponential distribution.
If the assumed distribution is gamma (but not Erlang) or certain other distributions, then the computation of
endpoints for class intervals is complex and could require numerical integration of the density function.
Statistical-analysis software is very helpful in such cases.

Example 9.15: Chi-Square Test for Exponential Distribution
In Example 9.11, the failure data presented in Example 9.3 were analyzed. The histogram of the data. shown
in Figure 9.3, appeared to follow an exponential distribution. so the parameter A =1/ X =0.084 was
computed. Thus, the following hypotheses are formed:

H,: the random variable is exponentially distributed.
H : the random variable is not exponentially distributed.

In order to perform the chi-square test with intervals of equal probability. the endpoints of the class inter-
vals must be found. Equation (9.18) indicates that the number of intervals should be less than or equal to n/5.
Here, n = 50, and so k < 10. In Table 9.5, it is recommended that 7 to 10 class intervals be used. Let k = §:
then each interval will have probability p = 0.125. The endpoints for each interval are computed from the cdf
for the exponential distribution, given in Equation (5.28), as follows:

Fla)=1-¢"" (9.19)
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where @, represents the endpoint of the ith interval, i = 1. 2, ..., k. Since F(«,) is the cumulative area from
zero to a, Fla,) = ip. so Equation (9.19) can be written as

A

ip=1-e

or

-Au 3
e =1-ip

Taking the logarithm of both sides and solving for «, gives a general result for the endpoints of k equiprob-
able intervals for the exponential distribution:

1
a, :»—Eln(l—ip). i=0,1..... k (9.20)

Regardless of the value of A, Equation (9.20) will always result in a, = 0 and a, = . With A =0.084 and
k =8, a, is computed from Equation (9.20) as

l
a, = ——— In(1-0.125)=1.590
0.084

Continued application of Equation (9.20) fori=2.3, ... 7results ina.. .... a,as 3.425,5.595,.8.252. 11.677,
16.503. and 24.755. Since k = 8, a, = co. The first interval is [0, 1.59()_). the second interval is [1.590, 3.425).
and so on. The expectation is that 0.125 of the observations will fall in each interval. The observations, the
expectations, and the contributions to the calculated value of y; are shown in Table 9.7. The calculated
value of y;is 39.6. The degrees of freedom are given by k —s — 1 =8 — 1 — | = 6. At = 0.05. the tabulated
value of )((3)‘“5.‘, is 12.6. Since x; > X5 s, the null hypothesis is rejected. (The value of 15(”_6 is 16.8, so the
null hypothesis would also be rejected at level of significance «= 0.01.)

Table 9.7 Chi-Square Goodness-of-Fit Test for Example 9.15

Class Observed Frequenc, Expected Frequency, (O -EY
Interval 0. E, E,
[0, 1.590) 19 6.25 26.01
[1.590, 3.425) 10 6.25 2.25
[3.425,5.595) 3 6.25 0.81
[5.595, 8.252) 6 6.25 0.01
[8.252, 11.677) ! 6.25 441
[11.677. 16.503) | 6.25 4.41
[16.503, 24.755) 4 6.25 0.81
[24.755, oo) 6 6.25 0.01

50 50 39.6
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9.4.3 Kolmogorov-Smirnov Goodness-of-Fit Test

The chi-square goodness-of-fit test can accommodate the estimation of parameters from the data with a resultant
decrease in the degrees of freedom (one for each parameter estimated). The chi-square test requires that the data
be placed in class intervals; in the case of a continuous distributional assumption, this grouping is arbitrary.
Changing the number of classes and the interval width affects the value of the calculated and tabulated chi-square.
A hypothesis could be accepted when the data are grouped one way, but rejected when they are grouped another
way. Also, the distribution of the chi-square test statistic is known only approximately. and the power of the test
is sometimes rather low. As a result of these considerations, goodness-of-fit tests other than the chi-square. are
desired. The Kolmogorov—Smirnov test formalizes the idea behind examining a ¢ — ¢ plot.

The Kolmogorov—Smirnov test was presented in Section 7.4.1 to test for the uniformity of numbers.
Both of these uses fall into the category of testing for goodness of fit. Any continuous distributional assump-
tion can be tested for goodness of fit by using the method of Section 7.4.1.

The Kolmogorov—Smirnov test is particularly useful when sample sizes are small and when no param-
eters have been estimated from the data. When parameter estimates have been made. the critical values in
Table A.8 are biased; in particular, they are too conservative. In this context. “conservative™ means that the
critical values will be too large, resulting in simaller Type 1 (@) errors than those specified. The exact value
of « can be worked out in some instances. as is discussed at the end of this section.

The Kolmogorov—Smirnov test does not take any special tables when an exponential distribution is
assumed. The following example indicates how the test is applied in this instance. (Notice that it is not nec-
essary to estimate the parameter of the distribution in this example. so we may use Table AK.)

Example 9.16: Kolmogorov-Smirnov Test for Exponential Distribution
Suppose that 50 interarrival times (in minutes) are collected over the following 100-minute interval (arranged
in order of occurrence):

044 053 204 274 200 030 254 052 202 1.89 1.53  0.21
2.80  0.04 1.35 832 234 195 040 142 046 0.07 1.09  0.76
555 393 1.07 226 288 067 .12 026 457 537 0.12 319
1.63 1.46 1.08 206 085 083 244 102 224 211 315 290
6.58 (.64

The null hypothesis and its alternate are formed as follows:

H,: the interarrival times are exponentially distributed.
H : the interarrival times are not exponentially distributed.

The data were collected over the interval from 0 to 7= 100 minutes. It can be shown that, if the under-
lying distribution of interarrival times (7. 7,. ...} is exponential, the arrival times are uniformly distributed
on the interval (0, T). The arrival times 7. 7 + T, T + T.+ T, ... T, + -~ + T arc obtained by adding
interarrival times. The arrival times are then normalized 1o a (0. 1) interval so that the Kolmogorov—-
Smirnov test, as presented in Section 7.4.1. can be applied. On a (0, 1) interval, the points will be [T /T.
(T, +TH/T. ....(T + - + T,)/T]. The resulting 50 data points are as follows:

0.0044  0.0097  0.0301 0.0575 0.0775 0.0805 0.1059 0.1t 0.1313  0.1502
0.1655 0.1676  0.1956 0.1960 0.2095 0.2927 0.3161 0.2356  0.3366  0.3508
0.3553  0.3561 0.3670 0.3746 0.4300 0.4694 (.4796 0.5027 05315 0.5382
0.5494  0.5520  0.5977 0.6514 0.6526 0.6845 0.7008 0.7154  0.7262  0.7468
0.7553  0.7636  0.7880 0.7982 0.8200 0.8417 0.8732 0.9022 09680 0.9744
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Following the procedure in Example 7.6 produces a D* of 0.1054 and a D~ of 0.0080). Therefore, the
Kolmogorov-Smirnov statistic is D = max(0.1054. 0.0080) = 0.1054. The critical value of D obtained from
Table A8 for a level of significance of a=0.05 and n=501is D, = 1.36//n = 0.1923; but D = 0.1054. so
the hypothesis that the interarrival times are exponentially distributed cannot be rejected.

The Kolmogorov—Smirnov test has been modified so that it can be used in several situations where the
parameters are estimated from the data. The computation of the test statistic is the same, but different tables
of critical values are used. Different tables of critical values are required for different distributional assump-
tions. Lilliefors [1967] developed a test for normality. The null hypothesis states that the population is one
of the family of normal distributions, without specifying the parameters of the distribution. The interested
reader might wish to study Lilliefors® original work; he describes how simulation was used to develop the
critical values.

Lilliefors [1969] also modified the critical values of the Kolmogorov—Smirnov test for the exponential
distribution. Lilliefors again used random sampling to obtain approximate critical values. but Durbin [1975]
subsequently obtained the exact distribution. Connover [ 1998] gives examples of Kolmogorov—Smirnov tests
for the normal and exponential distributions. He also refers to several other Kolmogorov—Smirnov-type tests
that might be of interest to the reader.

A test that is similar in spirit to the Kolmogorov-Smirnov test is the Anderson—-Darling test. Like the
Kolmogorov—Smirnov test, the Anderson-Darling test is based on the diftference between the empirical ¢dt and
the fitted cdf;, unlike the Kolmogorov-Smirnov test. the Anderson-Darling test is based on a more compre-
hensive measure of difference (not just the maximum difference) and is more sensitive to discrepancies in the
tails of the distributions. The critical values for the Anderson-Darling test also depend on the candidate distri-
bution and on whether parameters have been estimated. Fortunately, this test and the Kolmogorov—Smirnov test
have been implemented in a number of software packages that support simulation-input modeling.

9.4.4 p-Values and “Best Fits”

To apply a goodness-of-fit test. a significance level must be chosen. Recall that the significance level is the
probability of falsely rejecting H,: the random variable conforms to the distributional assumption. The tra-
ditional significance levels are 0.1, 0.05 and 0.01. Prior to the availability of high-speed computing, having
a small set of standard values made it possible to produce tables of useful critical values. Now most statisti-
cal software computes critical values as needed. rather than storing them in tables. Thus, the analyst can
employ a difterent level of significance—say. 0.07.

However. rather than require a prespecified significance level. many software packages compute a
p-value for the test statistic. The p-value is the signiticance level at which one would just reject H, for the
given value of the test statistic. Therefore. a large p-value tends to indicate a good fit (we would have to
accept a large chance of error in order to reject). while a small p-value suggests a poor fit (to accept we would
have to insist on almost no risk).

Recall Example 9.14. in which a chi-square test was used to check the Poisson assumption for the vehi-
cle-arrival data. The value of the test statistic was y; = 27.58. with 5 degrees of freedom. The p-value for this
test statistic is 0.00004, meaning that we would reject the hypothesis that the data are Poisson at the 0.00004
significance level. (Recall that we rejected the hypothesis at the 0.05 level: now we know that we would also
to reject it at even lower levels.)

The p-value can be viewed as a measure of fit, with larger values being better. This suggests that we
could fit every distribution at our disposal. compute a test statistic for each fit, and then choose the distribu-
tion that yields the largest p-value. We know of no input modeling software that implements this specific

algorithm, but many such packages do include a “best fit”™ option, in which the software recommends an
input model to the user after evaluating all feasible modeis. The software might also take into account other
factors—such as whether the data are discrete or continuous, bounded or unbounded—but, in the end, some
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summary measure of fit. like the p-value. is used to rank the distributions. There is nothing wrong with this.
but there are several things to keep in mind:

1. The software might know nothing about the physical basis of the data, whereas that information can

goal of input modeling is often to fill in gaps or smooth the data, rather than find an input model that
conforms as closely as possible to the given sample.

2. Recall that both the Erlang and the exponential distributions are special cases of the gamma and that
the exponential is also a special case of the more flexible Weibull. Automated best-fit procedures tend
to choose the more flexible distributions (gamma and Weibull over Erlang and exponential), because
the extra flexibility allows closer conformance to the data and a better summary measure of fit. But
again, close conformance to the data does not always lead to the most appropriate input model.

3. A summary statistic, like the p-value, is just that. a summary measure. It says little or nothing about
where the lack of fit occurs (in the body of the distribution, in the right tail, or in the left tail). A human.
using graphical tools, can see where the lack of fit occurs and decide whether or not it is important for
the application at hand.

Our recommendation is that automated distribution selection be used as one of several ways to suggest
candidate distributions. Always inspect the automatic selection. using graphical methods, and remember that
the final choice is yours.

9.5 FITTING A NONSTATIONARY POISSON PROCESS

Fitting a nonstationary Poisson process (NSPP) 1o arrival data is a ditficult problem, in general, because we
seldom have knowledge about the appropriate form of the arrival rate function A (1). (See Chapter 5. Section
5.5 for the definition of a NSPP). One approach is to choose a very flexible model with lots of parameters and
fit it with a method such as maximum likelihood: see Johnson, Lee, and Wilson [1994] for an example of this
approach. A second method, and the one we consider here. is to approximate the arrival rate as being constant
over some basic interval of time, such as an hour. or a day. or a month, but varying from time interval to time
interval. The problem then becomes choosing the basic time interval and estimating the arrival rate within
each interval.

Suppose we need to model arrivals over a time period, say [0. 7']. The approach that we describe is most
appropriate when it is possible to observe the time period [0, T’} repeatedly and count arrivals. For instance.
it the problem involves modeling the arrival of e-mail throughout the business day (8 A.M. to 6 P.M.), and we
believe that the arrival rate is approximately constant over half-hour intervals, then we need to be able to
count arrivals during half-hour intervals for several days. If it is possible to record actual arrival times, rather
than counts, then actual arrival times are clearly better since they can later be grouped into any interval
lengths we desire. However, we will assume from here on that only counts are available.

Divide the time period [0, 7] into k equal intervals of length Ar = T/k. For instance. if we are considering
a 10-hour business day from 8 AM. to 6 PM. and if we allow the rate to change every half hour, then T'= 10.
k=20, and Az = 1/2. Over n periods of observation (e.g.. n days), let C, be the number of arrivals that occurred
during the ith time interval on the jth period of observation. In our example, C,; would be the number of
arrivals from 8:30 AM. to 9 A.M. (second half-hour period) on the third day of observation.

The estimated arrival rate during the ith time period, (i — 1)Ar <1</ At, is then just the average number
of arrivals scaled by the length of the time interval:

"

in=—Yc 9.21)

nit

i=1
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Table 9.8 Monday E-mail Arrival Data for NSPP Example

Number of Arrivals
Time Period Day 1 Day 2 Day 3 Estimated Arrival Rate (arrivals/hour)
8:00-8:30 12 14 10 24
8:30-9:00 23 26 32 54
9:00-9:30 27 19 32 52
9:30-10:00 20 t3 12 30

After the arrival rates for each time interval have been estimated, adjacent intervals whose rates appear to be
the same can be combined.

For instance, consider the e-mail arrival counts during the first two hours of the business day on three
Mondays, shown in Table 9.8. The estimated arrival rate for 8:30-9:00 is

(23+ 26+ 32) = 54 arrivals/hour
3(1/2)

After seeing these results we might consider combining the interval 8:30-9:00 with the interval 9:00-9:30,
because the rates are so similar. Note also that the goodness-of-fit tests described in the previous section can
be applied to the data from each time interval individually. to check the Poisson approximation.

9.6 SELECTING INPUT MODELS WITHOUT DATA

Unfortunately. it is often necessary in practice to develop a simulation model-—perhaps for demonstration

purposes or a preliminary study—before any process data are available. In this case, the modeler must be

resourceful in choosing input models and must carefully check the sensitivity of results to the chosen models.
There are a number of ways to obtain information about a process even if data are not available:

Engineering data:  Often a product or process has performance ratings provided by the manufacturer
(for example, the mean time to failure of a disk drive 1s 10000 hours; a laser printer can produce
8 pages/minute; the cutting speed of a tool is 1 cm/second: etc.). Company rules might specify time
or production standards. These values provide a starting point for input modeling by fixing a central
value.

Expert option: Talk to people who are experienced with the process or similar processes. Often, they
can provide optimistic, pessimistic, and most-likely times. They might also be able to say whether the
process is nearly constant or highly variable, and they might be able to define the source of variability.

Physical or conventional limitations: Most real processes have physical limits on performance—tor
example, computer data entry cannot be faster than a person can type. Because of company policies,
there could be upper limits on how long a process may take. Do not ignore obvious limits or bounds
that narrow the range of the input process.

The nature of the process: The description of the distributions in Section 9.2.2 can be used to justity
a particular choice even when no data are available.

When data are not available, the uniform, triangular, and beta distributions are often used as input models.
The uniform can be a poor choice, because the upper and lower bounds are rarely just as likely as the central
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values in real processes. If. in addition to upper and lower bounds. a most-likely value can be given, then the
triangular distribution can be used. The triangular distribution places much of its probability near the most-
likely value. and much less near the extremes. (Sce Section 5.4.) If a beta distribution is used. then be sure
to plot the density function of the sclected distribution: the beta can take unusual shapes.

A useful refinement is obtained when a minimum, a maximum, and one or more ““breakpoints™ can be
given. A breakpoint is an intermediate value together with a probability of being less than or equal to that
value. The following example illustrates how breakpoints are used.

Example 9.17
For a production-planning simulation, the sales volume of various products is required. The salesperson
responsible for product XYZ-123 says that no fewer than 1000 units will be sold (because of existing con-
tracts) and no more than 5000 units will be sold (because that is the entire market for the product). Given her
experience, she believes that there is a 90% chance of selling more than 2000 units. a 25% chance of selling
more than 3500 units, and only a 1% chance of selling more than 4500 units.

Table 9.9 summarizes this information. Notice that the chances of exceeding certain sales goals have
been translated into the cumulative probability of being less than or equal to those goals. With the informa-
tion in this form, the method of Section 8.1.5 can be employed to generate simulation-input data.

When input models have been selected without data. it is especially important to test the sensitivity
of simulation results to the distribution chosen. Check sensitivity not only to the center of the distribution,
but also to the variability or limits. Extreme sensitivity of output results to the input model provides a
convincing argument against making critical decisions based on the results and in tavor of undertaking data
collection.

For additional discussion of input modeling in the absence of data. see Pegden, Shannon, and Sadowski
[1995].

9.7 MULTIVARIATE AND TIME-SERIES INPUT MODELS

In Sections 9.1-9.4, the random variables presented were considered to be independent of any other vari-
ables within the context of the problem. However. variables may be related. and, if the variables appear in a
simulation model as inputs, the relationship should be investigated and taken into consideration.

Example 9.18
An inventory simulation includes the lead time and annual demand for industrial robots. An increase in
demand results in an increase in lead time: The final assembly of the robots must be made according to the
specifications of the purchaser. Therefore, rather than treat lead time and demand as independent random
variables, a multivariate input model should be developed.

Table 9.9 Summary of Sales Information

Interval Cumulative
i (Sales) Frequency, ¢,
| 1000 < & <2000 0.10
2 2000 < v < 3500 0.75
3 3500 < v < 4500 0.99
4 4500 < v < 5000 1.00




